ML Community Day is November 9! Join us for updates from TensorFlow, JAX, and more Learn more

tensorflow:: ops:: ResourceSparseApplyFtrl

#include <training_ops.h>

Update relevant entries in '*var' according to the Ftrl-proximal scheme.

Summary

That is for rows we have grad for, we update var, accum and linear as follows: accum_new = accum + grad * grad linear += grad - (accum_new^(-lr_power) - accum^(-lr_power)) / lr * var quadratic = 1.0 / (accum_new^(lr_power) * lr) + 2 * l2 var = (sign(linear) * l1 - linear) / quadratic if |linear| > l1 else 0.0 accum = accum_new

Args:

  • scope: A Scope object
  • var: Should be from a Variable().
  • accum: Should be from a Variable().
  • linear: Should be from a Variable().
  • grad: The gradient.
  • indices: A vector of indices into the first dimension of var and accum.
  • lr: Scaling factor. Must be a scalar.
  • l1: L1 regularization. Must be a scalar.
  • l2: L2 regularization. Must be a scalar.
  • lr_power: Scaling factor. Must be a scalar.

Optional attributes (see Attrs ):

  • use_locking: If True , updating of the var and accum tensors will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.

Returns:

Constructors and Destructors

ResourceSparseApplyFtrl (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input accum, :: tensorflow::Input linear, :: tensorflow::Input grad, :: tensorflow::Input indices, :: tensorflow::Input lr, :: tensorflow::Input l1, :: tensorflow::Input l2, :: tensorflow::Input lr_power)
ResourceSparseApplyFtrl (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input accum, :: tensorflow::Input linear, :: tensorflow::Input grad, :: tensorflow::Input indices, :: tensorflow::Input lr, :: tensorflow::Input l1, :: tensorflow::Input l2, :: tensorflow::Input lr_power, const ResourceSparseApplyFtrl::Attrs & attrs)

Public attributes

operation

Public functions

operator::tensorflow::Operation () const

Public static functions

MultiplyLinearByLr (bool x)
UseLocking (bool x)

Structs

tensorflow:: ops:: ResourceSparseApplyFtrl:: Attrs

Optional attribute setters for ResourceSparseApplyFtrl .

Public attributes

operation

Operation operation

Public functions

ResourceSparseApplyFtrl

 ResourceSparseApplyFtrl(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input var,
  ::tensorflow::Input accum,
  ::tensorflow::Input linear,
  ::tensorflow::Input grad,
  ::tensorflow::Input indices,
  ::tensorflow::Input lr,
  ::tensorflow::Input l1,
  ::tensorflow::Input l2,
  ::tensorflow::Input lr_power
)

ResourceSparseApplyFtrl

 ResourceSparseApplyFtrl(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input var,
  ::tensorflow::Input accum,
  ::tensorflow::Input linear,
  ::tensorflow::Input grad,
  ::tensorflow::Input indices,
  ::tensorflow::Input lr,
  ::tensorflow::Input l1,
  ::tensorflow::Input l2,
  ::tensorflow::Input lr_power,
  const ResourceSparseApplyFtrl::Attrs & attrs
)

operator::tensorflow::Operation

 operator::tensorflow::Operation() const 

Public static functions

MultiplyLinearByLr

Attrs MultiplyLinearByLr(
  bool x
)

UseLocking

Attrs UseLocking(
  bool x
)