Help protect the Great Barrier Reef with TensorFlow on Kaggle

# tensorflow::ops::SparseApplyRMSProp

#include <training_ops.h>

Update '*var' according to the RMSProp algorithm.

## Summary

Note that in dense implementation of this algorithm, ms and mom will update even if the grad is zero, but in this sparse implementation, ms and mom will not update in iterations during which the grad is zero.

mean_square = decay * mean_square + (1-decay) * gradient ** 2 Delta = learning_rate * gradient / sqrt(mean_square + epsilon)

$$ms <- rho * ms_{t-1} + (1-rho) * grad * grad$$
$$mom <- momentum * mom_{t-1} + lr * grad / sqrt(ms + epsilon)$$
$$var <- var - mom$$

Args:

• scope: A Scope object
• var: Should be from a Variable().
• ms: Should be from a Variable().
• mom: Should be from a Variable().
• lr: Scaling factor. Must be a scalar.
• rho: Decay rate. Must be a scalar.
• epsilon: Ridge term. Must be a scalar.
• indices: A vector of indices into the first dimension of var, ms and mom.

Optional attributes (see Attrs):

• use_locking: If True, updating of the var, ms, and mom tensors is protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.

Returns:

• Output: Same as "var".

### Constructors and Destructors

SparseApplyRMSProp(const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input ms, ::tensorflow::Input mom, ::tensorflow::Input lr, ::tensorflow::Input rho, ::tensorflow::Input momentum, ::tensorflow::Input epsilon, ::tensorflow::Input grad, ::tensorflow::Input indices)
SparseApplyRMSProp(const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input ms, ::tensorflow::Input mom, ::tensorflow::Input lr, ::tensorflow::Input rho, ::tensorflow::Input momentum, ::tensorflow::Input epsilon, ::tensorflow::Input grad, ::tensorflow::Input indices, const SparseApplyRMSProp::Attrs & attrs)

### Public attributes

operation
Operation
out
::tensorflow::Output

### Public functions

node() const
::tensorflow::Node *
operator::tensorflow::Input() const
operator::tensorflow::Output() const

### Public static functions

UseLocking(bool x)
Attrs

### Structs

tensorflow::ops::SparseApplyRMSProp::Attrs

Optional attribute setters for SparseApplyRMSProp.

## Public attributes

### operation

Operation operation

### out

::tensorflow::Output out

## Public functions

### SparseApplyRMSProp

 SparseApplyRMSProp(
const ::tensorflow::Scope & scope,
::tensorflow::Input var,
::tensorflow::Input ms,
::tensorflow::Input mom,
::tensorflow::Input lr,
::tensorflow::Input rho,
::tensorflow::Input momentum,
::tensorflow::Input epsilon,
::tensorflow::Input indices
)

### SparseApplyRMSProp

 SparseApplyRMSProp(
const ::tensorflow::Scope & scope,
::tensorflow::Input var,
::tensorflow::Input ms,
::tensorflow::Input mom,
::tensorflow::Input lr,
::tensorflow::Input rho,
::tensorflow::Input momentum,
::tensorflow::Input epsilon,
::tensorflow::Input indices,
const SparseApplyRMSProp::Attrs & attrs
)

### node

::tensorflow::Node * node() const

### operator::tensorflow::Input

 operator::tensorflow::Input() const

### operator::tensorflow::Output

 operator::tensorflow::Output() const

## Public static functions

### UseLocking

Attrs UseLocking(
bool x
)
[{ "type": "thumb-down", "id": "missingTheInformationINeed", "label":"Missing the information I need" },{ "type": "thumb-down", "id": "tooComplicatedTooManySteps", "label":"Too complicated / too many steps" },{ "type": "thumb-down", "id": "outOfDate", "label":"Out of date" },{ "type": "thumb-down", "id": "samplesCodeIssue", "label":"Samples / code issue" },{ "type": "thumb-down", "id": "otherDown", "label":"Other" }]
[{ "type": "thumb-up", "id": "easyToUnderstand", "label":"Easy to understand" },{ "type": "thumb-up", "id": "solvedMyProblem", "label":"Solved my problem" },{ "type": "thumb-up", "id": "otherUp", "label":"Other" }]