ML Community Day is November 9! Join us for updates from TensorFlow, JAX, and more Learn more

tf.compat.v1.estimator.tpu.TPUEstimator

Estimator with TPU support.

Inherits From: Estimator

Migrate to TF2

TPU Estimator manages its own TensorFlow graph and session, so it is not compatible with TF2 behaviors. We recommend that you migrate to the newer tf.distribute.TPUStrategy. See the TPU guide for details.

Description

TPUEstimator also supports training on CPU and GPU. You don't need to define a separate tf.estimator.Estimator.

TPUEstimator handles many of the details of running on TPU devices, such as replicating inputs and models for each core, and returning to host periodically to run hooks.

TPUEstimator transforms a global batch size in params to a per-shard batch size when calling the input_fn and model_fn. Users should specify global batch size in constructor, and then get the batch size for each shard in input_fn and model_fn by params['batch_size'].

  • For training, model_fn gets per-core batch size; input_fn may get per-core or per-host batch size depending on per_host_input_for_training in TPUConfig (See docstring for TPUConfig for details).

  • For evaluation and prediction, model_fn gets per-core batch size and input_fn get per-host batch size.

Evaluation

model_fn should return TPUEstimatorSpec, which expects the eval_metrics for TPU evaluation. If eval_on_tpu is False, the evaluation will execute on CPU or GPU; in this case the following discussion on TPU evaluation does not apply.

TPUEstimatorSpec.eval_metrics is a tuple of metric_fn and tensors, where tensors could be a list of any nested structure of Tensors (See TPUEstimatorSpec for details). metric_fn takes the tensors and returns a dict from metric string name to the result of calling a metric function, namely a (metric_tensor, update_op) tuple.

One can set use_tpu to False for testing. All training, evaluation, and pre