ML Community Day is November 9! Join us for updates from TensorFlow, JAX, and more Learn more

tf.compat.v1.keras.layers.LSTMCell

Cell class for the LSTM layer.

Inherits From: Layer, Module

units Positive integer, dimensionality of the output space.
activation Activation function to use. Default: hyperbolic tangent (tanh). If you pass None, no activation is applied (ie. "linear" activation: a(x) = x).
recurrent_activation Activation function to use for the recurrent step. Default: hard sigmoid (hard_sigmoid). If you pass None, no activation is applied (ie. "linear" activation: a(x) = x).
use_bias Boolean, whether the layer uses a bias vector.
kernel_initializer Initializer for the kernel weights matrix, used for the linear transformation of the inputs.
recurrent_initializer Initializer for the recurrent_kernel weights matrix, used for the linear transformation of the recurrent state.
bias_initializer Initializer for the bias vector.
unit_forget_bias Boolean. If True, add 1 to the bias of the forget gate at initialization. Setting it to true will also force bias_initializer="zeros". This is recommended in Jozefowicz et al., 2015
kernel_regularizer Regularizer function applied to the kernel weights matrix.
recurrent_regularizer Regularizer function applied to the recurrent_kernel weights matrix.
bias_regularizer Regularizer function applied to the bias vector.
kernel_constraint Constraint function applied to the kernel weights matrix.
recurrent_constraint Constraint function applied to the recurrent_kernel weights matrix.
bias_constraint Constraint function applied to the bias vector.
dropout Float between 0 and 1. Fraction of the units to drop for the linear transformation of the inputs.
recurrent_dropout Float between 0 and 1. Fraction of the units to drop for the linear transformation of the recurrent state.

Call arguments:

  • inputs: A 2D tensor.
  • states: List of state tensors corresponding to the previous timestep.
  • training: Python boolean indicating whether the layer should behave in training mode or in inference mode. Only relevant when dropout or recurrent_dropout is used.

Methods

get_dropout_mask_for_cell

View source

Get the dropout mask for RNN cell's input.

It will create mask based on context if there isn't any existing cached mask. If a new mask is generated, it will update the cache in the cell.

Args
inputs The input tensor whose shape will be used to generate dropout mask.
training Boolean tensor, whether its in training mode, dropout will be ignored in non-training mode.
count Int, how many dropout mask will be generated. It is useful for cell that has internal weights fused together.

Returns
List of mask tensor, generated or cached mask based on context.