ML Community Day is November 9! Join us for updates from TensorFlow, JAX, and more Learn more

tf.compat.v1.layers.Conv3DTranspose

Transposed 3D convolution layer (sometimes called 3D Deconvolution).

Inherits From: Conv3DTranspose, Conv3D, Layer, Layer, Module

Migrate to TF2

This API is not compatible with eager execution or tf.function.

Please refer to tf.layers section of the migration guide to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2 layer is tf.keras.layers.Conv3DTranspose.

Structural Mapping to Native TF2

None of the supported arguments have changed name.

Before:

 conv = tf.compat.v1.layers.Conv3DTranspose(filters=3, kernel_size=3)

After:

 conv = tf.keras.layers.Conv3DTranspose(filters=3, kernels_size=3)

Description

filters Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
kernel_size An integer or tuple/list of 3 integers, specifying the depth, height and width of the 3D convolution window. Can be a single integer to specify the same value for all spatial dimensions.
strides An integer or tuple/list of 3 integers, specifying the strides of the convolution along the depth, height and width. Can be a single integer to specify the same value for all spatial dimensions.
padding One of "valid" or "same" (case-insensitive). "valid" means no padding. "same" results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input.
data_format A string, one of channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch, depth, height, width, channels) while channels_first corresponds to inputs with shape (batch, channels, depth, height, width).
activation Activation function. Set it to None to maintain a linear activation.
use_bias Boolean, whether the layer uses a bias.
kernel_initializer An initializer for the convolution kernel.
bias_initializer An initializer for the bias vector. If None, the default initializer will be used.
kernel_regularizer Optional regularizer for the convolution kernel.
bias_regularizer Optional regularizer for the bias vector.
activity_regularizer Optional regularizer function for the output.
kernel_constraint Optional projection function to be applied to the kernel after being updated by a