tf.estimator.DNNClassifier

A classifier for TensorFlow DNN models.

Inherits From: Estimator

Used in the notebooks

Used in the tutorials

Example:

categorical_feature_a = categorical_column_with_hash_bucket(...)
categorical_feature_b = categorical_column_with_hash_bucket(...)

categorical_feature_a_emb = embedding_column(
    categorical_column=categorical_feature_a, ...)
categorical_feature_b_emb = embedding_column(
    categorical_column=categorical_feature_b, ...)

estimator = tf.estimator.DNNClassifier(
    feature_columns=[categorical_feature_a_emb, categorical_feature_b_emb],
    hidden_units=[1024, 512, 256])

# Or estimator using the ProximalAdagradOptimizer optimizer with
# regularization.
estimator = tf.estimator.DNNClassifier(
    feature_columns=[categorical_feature_a_emb, categorical_feature_b_emb],
    hidden_units=[1024, 512, 256],
    optimizer=tf.compat.v1.train.ProximalAdagradOptimizer(
      learning_rate=0.1,
      l1_regularization_strength=0.001
    ))

# Or estimator using an optimizer with a learning rate decay.
estimator = tf.estimator.DNNClassifier(
    feature_columns=[categorical_feature_a_emb, categorical_feature_b_emb],
    hidden_units=[1024, 512, 256],
    optimizer=lambda: tf.keras.optimizers.Adam(
        learning_rate=tf.compat.v1.train.exponential_decay(
            learning_rate=0.1,
            global_step=tf.compat.v1.train.get_global_step(),
            decay_steps=10000,
            decay_rate=0.96))

# Or estimator with warm-starting from a previous checkpoint.
estimator = tf.estimator.DNNClassifier(
    feature_columns=[categorical_feature_a_emb, categorical_feature_b_emb],
    hidden_units=[1024, 512, 256],
    warm_start_from="/path/to/checkpoint/dir")

# Input builders
def input_fn_train:
  # Returns tf.data.Dataset of (x, y) tuple where y represents label's class
  # index.
  pass
def input_fn_eval:
  # Returns tf.data.Dataset of (x, y) tuple where y represents label's class
  # index.
  pass
def input_fn_predict:
  # Returns tf.data.Dataset of (x, None) tuple.
  pass
estimator.train(input_fn=input_fn_train)
metrics = estimator.evaluate(input_fn=input_fn_eval)
predictions = estimator.predict(input_fn=input_fn_predict)

Input of train and evaluate should have following features, otherwise there will be a KeyError:

  • if weight_column is not None, a feature with key=weight_column whose value is a Tensor.
  • for each column in feature_columns:
    • if column is a CategoricalColumn, a feature with key=column.name whose value is a SparseTensor.
    • if column is a WeightedCategoricalColumn, two features: the first with key the id column name, the second with key the weight column name. Both features' value must be a SparseTensor.
    • if column is a DenseColumn, a feature with key=column.name whose value is a Tensor.

Loss is calculated by using softmax cross entropy.

hidden_units Iterable of number hidden units per layer. All layers are fully connected. Ex. [64, 32] means first layer has 64 nodes and second one has 32.
feature_columns An iterable containing all the feature columns used by the model. All items in the set should be instances of classes derived from _FeatureColumn.
model_dir Directory to save model parameters, graph and etc. This can also be used to load checkpoints from the directory into a estimator to continue training a previously saved model.
n_classes Number of label classes. Defaults to 2, namely binary classification. Must be > 1.
weight_column A string or a NumericColumn created by tf.feature_column.numeric_column defining feature column representing weights. It is used to down weight or boost examples during training. It will be multiplied by the loss of the example. If it is a string, it is used as a key to fetch weight tensor from the features. If it is a _NumericColumn, raw tensor is fetched by key weight_column.key, then weight_column.normalizer_fn is applied on it to get weight tensor.
label_vocabulary A list of strings represents possible label values. If given, labels must be string type and have any value in label_vocabulary. If it is not given, that means labels are already encoded as integer or float within [0, 1] for n_classes=2 and encoded as integer values in {0, 1,..., n_classes-1} for n_classes>2 . Also there will be errors if vocabulary is not provided and labels are string.
optimizer An instance of tf.keras.optimizers.* used to train the model. Can also be a string (one of 'Adagrad', 'Adam', 'Ftrl', 'RMSProp', SGD'), or callable. Defaults to Adagrad optimizer.
activation_fn Activation function applied to each layer. If None, will use tf.nn.relu.
dropout When not None, the probability we will drop out a given coordinate.
config RunConfig object to configure the runtime settings.
warm_start_from A string filepath to a checkpoint to warm-start from, or a WarmStartSettings object to fully configure warm-starting. If the string filepath is provided instead of a WarmStartSettings, then all weights are warm-started, and it is assumed that vocabularies and Tensor names are unchanged.
loss_reduction One of tf.losses.Reduction except NONE. Describes how to reduce training loss over batch. Defaults to SUM_OVER_BATCH_SIZE.
batch_norm Whether to use batch normalization after each hidden layer.

Eager Compatibility

Estimators can be used while eager execution is enabled. Note that input_fn and all hooks are executed inside a graph context, so they have to be written to be compatible with graph mode. Note that input_fn code using tf.data generally works in both graph and eager modes.

config

export_savedmodel

model_dir

model_fn Returns the model_fn which is bound to self.params.
params

Methods

eval_dir

View source

Shows the directory name where evaluation metrics are dumped.

Args
name Name of the evaluation if user needs to run multiple evaluations on different data sets, such as on training data vs test data. Metrics for different evaluations are saved in separate folders, and appear separately in tensorboard.

Returns
A string which is the path of directory contains evaluation metrics.

evaluate

View source

Evaluates the model given evaluation data input_fn.

For each step, calls input_fn, which returns one batch of data. Evaluates until:

Args
input_fn A function that constructs the input data for evaluation. See Premade Estimators for more information. The function should construct and return one of the following:

  • A tf.data.Dataset object: Outputs of Dataset object must be a tuple (features, labels) with same constraints as below.
  • A tuple (features, labels): Where features is a tf.Tensor or a dictionary of string feature name to Tensor and labels is a Tensor or a dictionary of string label name to Tensor. Both features and labels are consumed by model_fn. They should satisfy the expectation of model_fn from inputs.
steps Number of steps for which to evaluate model. If None, evaluates until input_fn raises an end-of-input exception.
hooks List of tf.train.SessionRunHook subclass instances. Used for callbacks inside the evaluation call.
checkpoint_path Path of a specific checkpoint to evaluate. If None, the latest checkpoint in model_dir is used. If there are no checkpoints in model_dir, evaluation is run with newly initialized Variables instead of ones restored from checkpoint.