tf.estimator.DNNLinearCombinedEstimator

An estimator for TensorFlow Linear and DNN joined models with custom head.

Inherits From: Estimator, Estimator

Example:

numeric_feature = numeric_column(...)
categorical_column_a = categorical_column_with_hash_bucket(...)
categorical_column_b = categorical_column_with_hash_bucket(...)

categorical_feature_a_x_categorical_feature_b = crossed_column(...)
categorical_feature_a_emb = embedding_column(
    categorical_column=categorical_feature_a, ...)
categorical_feature_b_emb = embedding_column(
    categorical_column=categorical_feature_b, ...)

estimator = tf.estimator.DNNLinearCombinedEstimator(
    head=tf.estimator.MultiLabelHead(n_classes=3),
    # wide settings
    linear_feature_columns=[categorical_feature_a_x_categorical_feature_b],
    linear_optimizer=tf.keras.optimizers.Ftrl(...),
    # deep settings
    dnn_feature_columns=[
        categorical_feature_a_emb, categorical_feature_b_emb,
        numeric_feature],
    dnn_hidden_units=[1000, 500, 100],
    dnn_optimizer=tf.keras.optimizers.Adagrad(...))

# To apply L1 and L2 regularization, you can set dnn_optimizer to:
tf.compat.v1.train.ProximalAdagradOptimizer(
    learning_rate=0.1,
    l1_regularization_strength=0.001,
    l2_regularization_strength=0.001)
# To apply learning rate decay, you can set dnn_optimizer to a callable:
lambda: tf.keras.optimizers.Adam(
    learning_rate=tf.compat.v1.train.exponential_decay(
        learning_rate=0.1,
        global_step=tf.compat.v1.train.get_global_step(),
        decay_steps=10000,
        decay_rate=0.96)
# It is the same for linear_optimizer.

# Input builders
def input_fn_train:
  # Returns tf.data.Dataset of (x, y) tuple where y represents label's class
  # index.
  pass
def input_fn_eval:
  # Returns tf.data.Dataset of (x, y) tuple where y represents label's class
  # index.
  pass
def input_fn_predict:
  # Returns tf.data.Dataset of (x, None) tuple.
  pass
estimator.train(input_fn=input_fn_train, steps=100)
metrics = estimator.evaluate(input_fn=input_fn_eval, steps=10)
predictions = estimator.predict(input_fn=input_fn_predict)

Input of train and evaluate should have following features, otherwise there will be a KeyError:

  • for each column in dnn_feature_columns + linear_feature_columns:
    • if column is a CategoricalColumn, a feature with key=column.name whose value is a SparseTensor.
    • if column is a WeightedCategoricalColumn, two features: the first with key the id column name, the second with key the weight column name. Both features' value must be a SparseTensor.
    • if column is a DenseColumn, a feature with key=column.name whose value is a Tensor.

Loss is calculated by using mean squared error.

head A Head instance constructed with a method such as tf.estimator.MultiLabelHead.
model_dir Directory to save model parameters, graph and etc. This can also be used to load checkpoints from the directory into an estimator to continue training a previously saved model.
linear_feature_columns An iterable containing all the feature columns used by linear part of the model. All items in the set must be instances of classes derived from FeatureColumn.
linear_optimizer An instance of tf.keras.optimizers.* used to apply gradients to the linear part of the model. Can also be a string (one of 'Adagrad', 'Adam', 'Ftrl', 'RMSProp', 'SGD'), or callable. Defaults to FTRL optimizer.
dnn_feature_columns An iterable containing all the feature columns used by deep part of the model. All items in the set must be instances of classes derived from FeatureColumn.
dnn_optimizer An instance of tf.keras.optimizers.* used to apply gradients to the deep part of the model. Can also be a string (one of 'Adagrad', 'Adam', 'Ftrl', 'RMSProp', 'SGD'), or callable. Defaults to Adagrad optimizer.
dnn_hidden_units List of hidden units per layer. All layers are fully connected.
dnn_activation_fn Activation function applied to each layer. If None, will use tf.nn.relu.
dnn_dropout When not None, the probability we will drop out a given coordinate.
config RunConfig object to configure the runtime settings.
batch_norm Whether to use batch normalization after each hidden layer.
linear_sparse_combiner A string specifying how to reduce the linear model if a categorical column is multivalent. One of "mean", "sqrtn", and "sum" -- these are effectively different ways to do example-level normalization, which can be useful for bag-of-words features. For more details, see tf.feature_column.linear_model.

ValueError If both linear_feature_columns and dnn_features_columns are empty at the same time.

config

export_savedmodel

model_dir

model_fn Returns the model_fn which is bound to self.params.
params

Methods

eval_dir