Help protect the Great Barrier Reef with TensorFlow on Kaggle Join Challenge

tf.estimator.LinearRegressor

An estimator for TensorFlow Linear regression problems.

Inherits From: Estimator, Estimator

Used in the notebooks

Used in the guide Used in the tutorials

Train a linear regression model to predict label value given observation of feature values.

Example:

categorical_column_a = categorical_column_with_hash_bucket(...)
categorical_column_b = categorical_column_with_hash_bucket(...)

categorical_feature_a_x_categorical_feature_b = crossed_column(...)

# Estimator using the default optimizer.
estimator = tf.estimator.LinearRegressor(
    feature_columns=[categorical_column_a,
                     categorical_feature_a_x_categorical_feature_b])

# Or estimator using the FTRL optimizer with regularization.
estimator = tf.estimator.LinearRegressor(
    feature_columns=[categorical_column_a,
                     categorical_feature_a_x_categorical_feature_b],
    optimizer=tf.keras.optimizers.Ftrl(
      learning_rate=0.1,
      l1_regularization_strength=0.001
    ))

# Or estimator using an optimizer with a learning rate decay.
estimator = tf.estimator.LinearRegressor(
    feature_columns=[categorical_column_a,
                     categorical_feature_a_x_categorical_feature_b],
    optimizer=lambda: tf.keras.optimizers.Ftrl(
        learning_rate=tf.compat.v1.train.exponential_decay(
            learning_rate=0.1,
            global_step=tf.compat.v1.train.get_global_step(),
            decay_steps=10000,
            decay_rate=0.96))

# Or estimator with warm-starting from a previous checkpoint.
estimator = tf.estimator.LinearRegressor(
    feature_columns=[categorical_column_a,
                     categorical_feature_a_x_categorical_feature_b],
    warm_start_from="/path/to/checkpoint/dir")


# Input builders
def input_fn_train:
  # Returns tf.data.Dataset of (x, y) tuple where y represents label's class
  # index.
  pass
def input_fn_eval:
  # Returns tf.data.Dataset of (x, y) tuple where y represents label's class
  # index.
  pass
def input_fn_predict:
  # Returns tf.data.Dataset of (x, None) tuple.
  pass
estimator.train(input_fn=input_fn_train)
metrics = estimator.evaluate(input_fn=input_fn_eval)
predictions = estimator.predict(input_fn=input_fn_predict)

Input of train and evaluate should have following features, otherwise there will be a KeyError:

  • if weight_column is not None, a feature with key=weight_column whose value is a Tensor.
  • for each column in feature_columns:
    • if column is a SparseColumn, a feature with key=column.name whose value is a SparseTensor.
    • if column is a WeightedSparseColumn, two features: the first with key the id column name, the second with key the weight column name. Both features' value must be a SparseTensor.
    • if column is a RealValuedColumn, a feature with key=column.name whose value is a Tensor.

Loss is calculated by using mean squared error.

feature_columns An iterable containing all the feature columns used by the model. All items in the set should be instances of classes derived from FeatureColumn.
model_dir Directory to save model parameters, graph and etc. This can also be used to load checkpoints from the directory into a estimator to continue training a previously saved model.
label_dimension Number of regression targets per example. This is the size of the last dimension of the labels and logits Tensor objects (typically, these have shape [batch_size, label_dimension]).
weight_column A string or a NumericColumn created by tf.feature_column.numeric_column defining feature column representing weights. It is used to down weight or boost examples during training. It will be multiplied by the loss of the example. If it is a string, it is used as a key to fetch weight tensor from the features. If it is a NumericColumn, raw tensor is fetched by key weight_column.key, then weight_column.normalizer_fn is applied on it to get weight tensor.
optimizer An instance of tf.keras.optimizers.* or tf.estimator.experimental.LinearSDCA used to train the model. Can also be a string (one of 'Adagrad', 'Adam', 'Ftrl', 'RMSProp', 'SGD'), or callable. Defaults to FTRL optimizer.
config RunConfig object to configure the runtime settings.
warm_start_from A string filepath to a checkpoint to warm-start from, or a WarmStartSettings object to fully configure warm-starting. If the string filepath is provided instead of a WarmStartSettings, then all weights and biases are warm-started, and it is assumed that vocabularies and Tensor names are unchanged.
loss_reduction One of tf.losses.Reduction except NONE. Describes how to reduce training loss over batch. Defaults to SUM.
sparse_combiner A string specifying how to reduce if a categorical column is multivalent. One of "mean", "sqrtn", and "sum" -- these are effectively different ways to do example-level normalization, which can be useful for bag-of-words features. for more details, see tf.feature_column.linear_model.

config

export_savedmodel

model_dir

model_fn Returns the model_fn which is bound to self.params.