tf.estimator.RegressionHead

Creates a Head for regression using the mean_squared_error loss.

Inherits From: Head

The loss is the weighted sum over all input dimensions. Namely, if the input labels have shape [batch_size, label_dimension], the loss is the weighted sum over both batch_size and label_dimension.

The head expects logits with shape [D0, D1, ... DN, label_dimension]. In many applications, the shape is [batch_size, label_dimension].

The labels shape must match logits, namely [D0, D1, ... DN, label_dimension]. If label_dimension=1, shape [D0, D1, ... DN] is also supported.

If weight_column is specified, weights must be of shape [D0, D1, ... DN], [D0, D1, ... DN, 1] or [D0, D1, ... DN, label_dimension].

Supports custom loss_fn. loss_fn takes (labels, logits) or (labels, logits, features, loss_reduction) as arguments and returns unreduced loss with shape [D0, D1, ... DN, label_dimension].

Also supports custom inverse_link_fn, also known as 'mean function'. inverse_link_fn is only used in PREDICT mode. It takes logits as argument and returns predicted values. This function is the inverse of the link function defined in https://en.wikipedia.org/wiki/Generalized_linear_model#Link_function Namely, for poisson regression, set inverse_link_fn=tf.exp.

Usage:

h