ML Community Day is November 9! Join us for updates from TensorFlow, JAX, and more Learn more


This class specifies the configurations for an Estimator run.

Used in the notebooks

Used in the guide Used in the tutorials

model_dir directory where model parameters, graph, etc are saved. If PathLike object, the path will be resolved. If None, will use a default value set by the Estimator.
tf_random_seed Random seed for TensorFlow initializers. Setting this value allows consistency between reruns.
save_summary_steps Save summaries every this many steps.
save_checkpoints_steps Save checkpoints every this many steps. Can not be specified with save_checkpoints_secs.
save_checkpoints_secs Save checkpoints every this many seconds. Can not be specified with save_checkpoints_steps. Defaults to 600 seconds if both save_checkpoints_steps and save_checkpoints_secs are not set in constructor. If both save_checkpoints_steps and save_checkpoints_secs are None, then checkpoints are disabled.
session_config a ConfigProto used to set session parameters, or None.
keep_checkpoint_max The maximum number of recent checkpoint files to keep. As new files are created, older files are deleted. If None or 0, all checkpoint files are kept. Defaults to 5 (that is, the 5 most recent checkpoint files are kept). If a saver is passed to the estimator, this argument will be ignored.
keep_checkpoint_every_n_hours Number of hours between each checkpoint to be saved. The default value of 10,000 hours effectively disables the feature.
log_step_count_steps The frequency, in number of global steps, that the global step and the loss will be logged during training. Also controls the frequency that the global steps / s will be logged (and written to summary) during training.
train_distribute An optional instance of tf.distribute.Strategy. If specified, then Estimator will distribute the user's model during training, according to the policy specified by that strategy. Setting experimental_distribute.train_distribute is preferred.
device_fn A callable invoked for every Operation that takes the Operation and returns the device string. If None, defaults to the device function returned by tf.train.replica_device_setter with round-robin strategy.
protocol An optional argument which specifies the protocol used when starting server. None means default to grpc.
eval_distribute An optional instance of