Help protect the Great Barrier Reef with TensorFlow on Kaggle Join Challenge

tf.keras.layers.RandomZoom

A preprocessing layer which randomly zooms images during training.

Inherits From: Layer, Module

Used in the notebooks

Used in the guide Used in the tutorials

This layer will randomly zoom in or out on each axis of an image independently, filling empty space according to fill_mode.

For an overview and full list of preprocessing layers, see the preprocessing guide.

height_factor a float represented as fraction of value, or a tuple of size 2 representing lower and upper bound for zooming vertically. When represented as a single float, this value is used for both the upper and lower bound. A positive value means zooming out, while a negative value means zooming in. For instance, height_factor=(0.2, 0.3) result in an output zoomed out by a random amount in the range [+20%, +30%]. height_factor=(-0.3, -0.2) result in an output zoomed in by a random amount in the range [+20%, +30%].
width_factor a float represented as fraction of value, or a tuple of size 2 representing lower and upper bound for zooming horizontally. When represented as a single float, this value is used for both the upper and lower bound. For instance, width_factor=(0.2, 0.3) result in an output zooming out between 20% to 30%. width_factor=(-0.3, -0.2) result in an output zooming in between 20% to 30%. Defaults to None, i.e., zooming vertical and horizontal directions by preserving the aspect ratio.
fill_mode Points outside the boundaries of the input are filled according to the given mode (one of {"constant", "reflect", "wrap", "nearest"}).

  • reflect: (d c b a | a b c d | d c b a) The input is extended by reflecting about the edge of the last pixel.
  • constant: (k k k k | a b c d | k k k k) The input is extended by filling all values beyond the edge with the same constant value k = 0.
  • wrap: (a b c d | a b c d | a b c d) The input is extended by wrapping around to the opposite edge.
  • nearest: (a a a a | a b c d | d d d d) The input is extended by the nearest pixel.
interpolation Interpolation mode. Supported values: "nearest", "bilinear".
seed Integer. Used to create a random seed.
fill_value a float represents the value to be filled outside the boundaries when fill_mode="constant".

Example:

input_img = np.random.random((32, 224, 224, 3))
layer = tf.keras.layers.RandomZoom(.5, .2)
out_img = layer(input_img)
out_img.shape
TensorShape([32, 224, 224, 3])

Input shape:

3D (unbatched) or 4D (batched) tensor with shape: (..., height, width, channels), in "channels_last" format.

Output shape:

3D (unbatched) or 4D (batched) tensor with shape: (..., height, width, channels), in "channels_last" format.