tf.random_uniform

tf.random_uniform(
    shape,
    minval=0,
    maxval=None,
    dtype=tf.float32,
    seed=None,
    name=None
)

Defined in tensorflow/python/ops/random_ops.py.

See the guide: Constants, Sequences, and Random Values > Random Tensors

Outputs random values from a uniform distribution.

The generated values follow a uniform distribution in the range [minval, maxval). The lower bound minval is included in the range, while the upper bound maxval is excluded.

For floats, the default range is [0, 1). For ints, at least maxval must be specified explicitly.

In the integer case, the random integers are slightly biased unless maxval - minval is an exact power of two. The bias is small for values of maxval - minval significantly smaller than the range of the output (either 2**32 or 2**64).

Args:

  • shape: A 1-D integer Tensor or Python array. The shape of the output tensor.
  • minval: A 0-D Tensor or Python value of type dtype. The lower bound on the range of random values to generate. Defaults to 0.
  • maxval: A 0-D Tensor or Python value of type dtype. The upper bound on the range of random values to generate. Defaults to 1 if dtype is floating point.
  • dtype: The type of the output: float16, float32, float64, int32, or int64.
  • seed: A Python integer. Used to create a random seed for the distribution. See tf.set_random_seed for behavior.
  • name: A name for the operation (optional).

Returns:

A tensor of the specified shape filled with random uniform values.

Raises:

  • ValueError: If dtype is integral and maxval is not specified.