tf.train.maybe_batch_join

tf.train.maybe_batch_join(
    tensors_list,
    keep_input,
    batch_size,
    capacity=32,
    enqueue_many=False,
    shapes=None,
    dynamic_pad=False,
    allow_smaller_final_batch=False,
    shared_name=None,
    name=None
)

Defined in tensorflow/python/training/input.py.

See the guide: Inputs and Readers > Input pipeline

Runs a list of tensors to conditionally fill a queue to create batches.

See docstring in batch_join for more details.

Args:

  • tensors_list: A list of tuples or dictionaries of tensors to enqueue.
  • keep_input: A bool Tensor. This tensor controls whether the input is added to the queue or not. If it is a scalar and evaluates True, then tensors are all added to the queue. If it is a vector and enqueue_many is True, then each example is added to the queue only if the corresponding value in keep_input is True. This tensor essentially acts as a filtering mechanism.
  • batch_size: An integer. The new batch size pulled from the queue.
  • capacity: An integer. The maximum number of elements in the queue.
  • enqueue_many: Whether each tensor in tensor_list_list is a single example.
  • shapes: (Optional) The shapes for each example. Defaults to the inferred shapes for tensor_list_list[i].
  • dynamic_pad: Boolean. Allow variable dimensions in input shapes. The given dimensions are padded upon dequeue so that tensors within a batch have the same shapes.
  • allow_smaller_final_batch: (Optional) Boolean. If True, allow the final batch to be smaller if there are insufficient items left in the queue.
  • shared_name: (Optional) If set, this queue will be shared under the given name across multiple sessions.
  • name: (Optional) A name for the operations.

Returns:

A list or dictionary of tensors with the same number and types as tensors_list[i].

Raises:

  • ValueError: If the shapes are not specified, and cannot be inferred from the elements of tensor_list_list.