Save the date! Google I/O returns May 18-20 Register now

german_credit_numeric

  • Description:

This dataset classifies people described by a set of attributes as good or bad credit risks. The version here is the "numeric" variant where categorical and ordered categorical attributes have been encoded as indicator and integer quantities respectively.

Split Examples
'train' 1,000
  • Features:
FeaturesDict({
    'features': Tensor(shape=(24,), dtype=tf.int32),
    'label': ClassLabel(shape=(), dtype=tf.int64, num_classes=2),
})
  • Citation:
@misc{Dua:2019 ,
author = "Dua, Dheeru and Graff, Casey",
year = "2017",
title = "{UCI} Machine Learning Repository",
url = "http://archive.ics.uci.edu/ml",
institution = "University of California, Irvine, School of Information and Computer Sciences"
}