Stay organized with collections Save and categorize content based on your preferences.

  • Description:

Radon is a radioactive gas that enters homes through contact points with the ground. It is a carcinogen that is the primary cause of lung cancer in non-smokers. Radon levels vary greatly from household to household. This dataset contains measured radon levels in U.S homes by county and state. The 'activity' label is the measured radon concentration in pCi/L. Important predictors are 'floor' (the floor of the house in which the measurement was taken), 'county' (the U.S. county in which the house is located), and 'Uppm' (a measurement of uranium level of the soil by county).

Split Examples
'train' 12,573
  • Feature structure:
    'activity': tf.float32,
    'features': FeaturesDict({
        'Uppm': tf.float32,
        'adjwt': tf.float32,
        'basement': tf.string,
        'cntyfips': tf.int32,
        'county': tf.string,
        'dupflag': tf.int32,
        'floor': tf.int32,
        'idnum': tf.int32,
        'lat': tf.float32,
        'lon': tf.float32,
        'pcterr': tf.float32,
        'region': tf.int32,
        'rep': tf.int32,
        'room': tf.int32,
        'startdt': tf.int32,
        'starttm': tf.int32,
        'state': tf.string,
        'state2': tf.string,
        'stfips': tf.int32,
        'stopdt': tf.int32,
        'stoptm': tf.int32,
        'stratum': tf.int32,
        'typebldg': tf.int32,
        'wave': tf.int32,
        'windoor': tf.string,
        'zip': tf.int32,
        'zipflag': tf.int32,
  • Feature documentation:
Feature Class Shape Dtype Description
activity Tensor tf.float32
features FeaturesDict
features/Uppm Tensor tf.float32
features/adjwt Tensor tf.float32
features/basement Tensor tf.string
features/cntyfips Tensor tf.int32
features/county Tensor tf.string
features/dupflag Tensor tf.int32
features/floor Tensor tf.int32
features/idnum Tensor tf.int32
features/lat Tensor tf.float32
features/lon Tensor tf.float32
features/pcterr Tensor tf.float32
features/region Tensor tf.int32
features/rep Tensor tf.int32
features/room Tensor tf.int32
features/startdt Tensor tf.int32
features/starttm Tensor tf.int32
features/state Tensor tf.string
features/state2 Tensor tf.string
features/stfips Tensor tf.int32
features/stopdt Tensor tf.int32
features/stoptm Tensor tf.int32
features/stratum Tensor tf.int32
features/typebldg Tensor tf.int32
features/wave Tensor tf.int32
features/windoor Tensor tf.string
features/zip Tensor tf.int32
features/zipflag Tensor tf.int32
  • Citation:
  author = {Gelman, Andrew and Hill, Jennifer},
  title = {Data Analysis Using Regression and Multilevel/Hierarchical Models},
  publisher = {Cambridge University Press},
  series = {Analytical methods for social research},
  year = 2007