Referências:
mlqa-translate-train.ar
Use o seguinte comando para carregar este conjunto de dados no TFDS:
ds = tfds.load('huggingface:mlqa/mlqa-translate-train.ar')
- Descrição :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- Licença : Nenhuma licença conhecida
- Versão : 1.0.0
- Divisões :
Dividir | Exemplos |
---|---|
'train' | 78058 |
'validation' | 9512 |
- Características :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa-translate-train.de
Use o seguinte comando para carregar este conjunto de dados no TFDS:
ds = tfds.load('huggingface:mlqa/mlqa-translate-train.de')
- Descrição :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- Licença : Nenhuma licença conhecida
- Versão : 1.0.0
- Divisões :
Dividir | Exemplos |
---|---|
'train' | 80069 |
'validation' | 9927 |
- Características :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa-translate-train.vi
Use o seguinte comando para carregar este conjunto de dados no TFDS:
ds = tfds.load('huggingface:mlqa/mlqa-translate-train.vi')
- Descrição :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- Licença : Nenhuma licença conhecida
- Versão : 1.0.0
- Divisões :
Dividir | Exemplos |
---|---|
'train' | 84816 |
'validation' | 10356 |
- Características :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa-translate-train.zh
Use o seguinte comando para carregar este conjunto de dados no TFDS:
ds = tfds.load('huggingface:mlqa/mlqa-translate-train.zh')
- Descrição :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- Licença : Nenhuma licença conhecida
- Versão : 1.0.0
- Divisões :
Dividir | Exemplos |
---|---|
'train' | 76285 |
'validation' | 9568 |
- Características :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa-translate-train.es
Use o seguinte comando para carregar este conjunto de dados no TFDS:
ds = tfds.load('huggingface:mlqa/mlqa-translate-train.es')
- Descrição :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- Licença : Nenhuma licença conhecida
- Versão : 1.0.0
- Divisões :
Dividir | Exemplos |
---|---|
'train' | 81810 |
'validation' | 10123 |
- Características :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa-translate-train.hi
Use o seguinte comando para carregar este conjunto de dados no TFDS:
ds = tfds.load('huggingface:mlqa/mlqa-translate-train.hi')
- Descrição :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- Licença : Nenhuma licença conhecida
- Versão : 1.0.0
- Divisões :
Dividir | Exemplos |
---|---|
'train' | 82451 |
'validation' | 10253 |
- Características :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa-translate-test.ar
Use o seguinte comando para carregar este conjunto de dados no TFDS:
ds = tfds.load('huggingface:mlqa/mlqa-translate-test.ar')
- Descrição :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- Licença : Nenhuma licença conhecida
- Versão : 1.0.0
- Divisões :
Dividir | Exemplos |
---|---|
'test' | 5335 |
- Características :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa-translate-test.de
Use o seguinte comando para carregar este conjunto de dados no TFDS:
ds = tfds.load('huggingface:mlqa/mlqa-translate-test.de')
- Descrição :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- Licença : Nenhuma licença conhecida
- Versão : 1.0.0
- Divisões :
Dividir | Exemplos |
---|---|
'test' | 4517 |
- Características :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa-translate-test.vi
Use o seguinte comando para carregar este conjunto de dados no TFDS:
ds = tfds.load('huggingface:mlqa/mlqa-translate-test.vi')
- Descrição :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- Licença : Nenhuma licença conhecida
- Versão : 1.0.0
- Divisões :
Dividir | Exemplos |
---|---|
'test' | 5495 |
- Características :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa-translate-test.zh
Use o seguinte comando para carregar este conjunto de dados no TFDS:
ds = tfds.load('huggingface:mlqa/mlqa-translate-test.zh')
- Descrição :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- Licença : Nenhuma licença conhecida
- Versão : 1.0.0
- Divisões :
Dividir | Exemplos |
---|---|
'test' | 5137 |
- Características :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa-translate-test.es
Use o seguinte comando para carregar este conjunto de dados no TFDS:
ds = tfds.load('huggingface:mlqa/mlqa-translate-test.es')
- Descrição :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- Licença : Nenhuma licença conhecida
- Versão : 1.0.0
- Divisões :
Dividir | Exemplos |
---|---|
'test' | 5253 |
- Características :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa-translate-test.hi
Use o seguinte comando para carregar este conjunto de dados no TFDS:
ds = tfds.load('huggingface:mlqa/mlqa-translate-test.hi')
- Descrição :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- Licença : Nenhuma licença conhecida
- Versão : 1.0.0
- Divisões :
Dividir | Exemplos |
---|---|
'test' | 4918 |
- Características :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.ar.ar
Use o seguinte comando para carregar este conjunto de dados no TFDS:
ds = tfds.load('huggingface:mlqa/mlqa.ar.ar')
- Descrição :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- Licença : Nenhuma licença conhecida
- Versão : 1.0.0
- Divisões :
Dividir | Exemplos |
---|---|
'test' | 5335 |
'validation' | 517 |
- Características :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.ar.de
Use o seguinte comando para carregar este conjunto de dados no TFDS:
ds = tfds.load('huggingface:mlqa/mlqa.ar.de')
- Descrição :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- Licença : Nenhuma licença conhecida
- Versão : 1.0.0
- Divisões :
Dividir | Exemplos |
---|---|
'test' | 1649 |
'validation' | 207 |
- Características :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.ar.vi
Use o seguinte comando para carregar este conjunto de dados no TFDS:
ds = tfds.load('huggingface:mlqa/mlqa.ar.vi')
- Descrição :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- Licença : Nenhuma licença conhecida
- Versão : 1.0.0
- Divisões :
Dividir | Exemplos |
---|---|
'test' | 2047 |
'validation' | 163 |
- Características :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.ar.zh
Use o seguinte comando para carregar este conjunto de dados no TFDS:
ds = tfds.load('huggingface:mlqa/mlqa.ar.zh')
- Descrição :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- Licença : Nenhuma licença conhecida
- Versão : 1.0.0
- Divisões :
Dividir | Exemplos |
---|---|
'test' | 1912 |
'validation' | 188 |
- Características :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.ar.en
Use o seguinte comando para carregar este conjunto de dados no TFDS:
ds = tfds.load('huggingface:mlqa/mlqa.ar.en')
- Descrição :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- Licença : Nenhuma licença conhecida
- Versão : 1.0.0
- Divisões :
Dividir | Exemplos |
---|---|
'test' | 5335 |
'validation' | 517 |
- Características :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.ar.es
Use o seguinte comando para carregar este conjunto de dados no TFDS:
ds = tfds.load('huggingface:mlqa/mlqa.ar.es')
- Descrição :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- Licença : Nenhuma licença conhecida
- Versão : 1.0.0
- Divisões :
Dividir | Exemplos |
---|---|
'test' | 1978 |
'validation' | 161 |
- Características :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.ar.hi
Use o seguinte comando para carregar este conjunto de dados no TFDS:
ds = tfds.load('huggingface:mlqa/mlqa.ar.hi')
- Descrição :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- Licença : Nenhuma licença conhecida
- Versão : 1.0.0
- Divisões :
Dividir | Exemplos |
---|---|
'test' | 1831 |
'validation' | 186 |
- Características :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.de.ar
Use o seguinte comando para carregar este conjunto de dados no TFDS:
ds = tfds.load('huggingface:mlqa/mlqa.de.ar')
- Descrição :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- Licença : Nenhuma licença conhecida
- Versão : 1.0.0
- Divisões :
Dividir | Exemplos |
---|---|
'test' | 1649 |
'validation' | 207 |
- Características :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.de.de
Use o seguinte comando para carregar este conjunto de dados no TFDS:
ds = tfds.load('huggingface:mlqa/mlqa.de.de')
- Descrição :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- Licença : Nenhuma licença conhecida
- Versão : 1.0.0
- Divisões :
Dividir | Exemplos |
---|---|
'test' | 4517 |
'validation' | 512 |
- Características :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.de.vi
Use o seguinte comando para carregar este conjunto de dados no TFDS:
ds = tfds.load('huggingface:mlqa/mlqa.de.vi')
- Descrição :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- Licença : Nenhuma licença conhecida
- Versão : 1.0.0
- Divisões :
Dividir | Exemplos |
---|---|
'test' | 1675 |
'validation' | 182 |
- Características :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.de.zh
Use o seguinte comando para carregar este conjunto de dados no TFDS:
ds = tfds.load('huggingface:mlqa/mlqa.de.zh')
- Descrição :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- Licença : Nenhuma licença conhecida
- Versão : 1.0.0
- Divisões :
Dividir | Exemplos |
---|---|
'test' | 1621 |
'validation' | 190 |
- Características :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.de.en
Use o seguinte comando para carregar este conjunto de dados no TFDS:
ds = tfds.load('huggingface:mlqa/mlqa.de.en')
- Descrição :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- Licença : Nenhuma licença conhecida
- Versão : 1.0.0
- Divisões :
Dividir | Exemplos |
---|---|
'test' | 4517 |
'validation' | 512 |
- Características :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.de.es
Use o seguinte comando para carregar este conjunto de dados no TFDS:
ds = tfds.load('huggingface:mlqa/mlqa.de.es')
- Descrição :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- Licença : Nenhuma licença conhecida
- Versão : 1.0.0
- Divisões :
Dividir | Exemplos |
---|---|
'test' | 1776 |
'validation' | 196 |
- Características :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.de.hi
Use o seguinte comando para carregar este conjunto de dados no TFDS:
ds = tfds.load('huggingface:mlqa/mlqa.de.hi')
- Descrição :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- Licença : Nenhuma licença conhecida
- Versão : 1.0.0
- Divisões :
Dividir | Exemplos |
---|---|
'test' | 1430 |
'validation' | 163 |
- Características :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.vi.ar
Use o seguinte comando para carregar este conjunto de dados no TFDS:
ds = tfds.load('huggingface:mlqa/mlqa.vi.ar')
- Descrição :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- Licença : Nenhuma licença conhecida
- Versão : 1.0.0
- Divisões :
Dividir | Exemplos |
---|---|
'test' | 2047 |
'validation' | 163 |
- Características :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.vi.de
Use o seguinte comando para carregar este conjunto de dados no TFDS:
ds = tfds.load('huggingface:mlqa/mlqa.vi.de')
- Descrição :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- Licença : Nenhuma licença conhecida
- Versão : 1.0.0
- Divisões :
Dividir | Exemplos |
---|---|
'test' | 1675 |
'validation' | 182 |
- Características :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.vi.vi
Use o seguinte comando para carregar este conjunto de dados no TFDS:
ds = tfds.load('huggingface:mlqa/mlqa.vi.vi')
- Descrição :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- Licença : Nenhuma licença conhecida
- Versão : 1.0.0
- Divisões :
Dividir | Exemplos |
---|---|
'test' | 5495 |
'validation' | 511 |
- Características :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.vi.zh
Use o seguinte comando para carregar este conjunto de dados no TFDS:
ds = tfds.load('huggingface:mlqa/mlqa.vi.zh')
- Descrição :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- Licença : Nenhuma licença conhecida
- Versão : 1.0.0
- Divisões :
Dividir | Exemplos |
---|---|
'test' | 1943 |
'validation' | 184 |
- Características :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.vi.en
Use o seguinte comando para carregar este conjunto de dados no TFDS:
ds = tfds.load('huggingface:mlqa/mlqa.vi.en')
- Descrição :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- Licença : Nenhuma licença conhecida
- Versão : 1.0.0
- Divisões :
Dividir | Exemplos |
---|---|
'test' | 5495 |
'validation' | 511 |
- Características :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.vi.es
Use o seguinte comando para carregar este conjunto de dados no TFDS:
ds = tfds.load('huggingface:mlqa/mlqa.vi.es')
- Descrição :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- Licença : Nenhuma licença conhecida
- Versão : 1.0.0
- Divisões :
Dividir | Exemplos |
---|---|
'test' | 2018 |
'validation' | 189 |
- Características :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.vi.hi
Use o seguinte comando para carregar este conjunto de dados no TFDS:
ds = tfds.load('huggingface:mlqa/mlqa.vi.hi')
- Descrição :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- Licença : Nenhuma licença conhecida
- Versão : 1.0.0
- Divisões :
Dividir | Exemplos |
---|---|
'test' | 1947 |
'validation' | 177 |
- Características :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.zh.ar
Use o seguinte comando para carregar este conjunto de dados no TFDS:
ds = tfds.load('huggingface:mlqa/mlqa.zh.ar')
- Descrição :
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
- Licença : Nenhuma licença conhecida
- Versão : 1.0.0
- Divisões :
Dividir | Exemplos |
---|---|
'test' | 1912 |
'validation' | 188 |
- Características :
{
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mlqa.zh.de
Use o seguinte comando para carregar este conjunto de dados no TFDS: