Google I/O הוא עטיפה! התעדכן בהפעלות של TensorFlow. צפה בהפעלות

דמיון בין לשוני ומנוע חיפוש סמנטי עם מקודד משפטים אוניברסלי רב לשוני

הצג באתר TensorFlow.org הפעל בגוגל קולאב הצג ב-GitHub הורד מחברת ראה דגם TF Hub

מחברת זו ממחישה כיצד לגשת למודול המקודד האוניברסלי למשפטים רב-לשוני ולהשתמש בו לצורך דמיון משפטי על פני מספר שפות. מודול זה הוא הרחבה של מודול קודאי אוניברסלי המקורי .

המחברת מחולקת כך:

  • החלק הראשון מציג הדמיה של משפטים בין צמד שפות. זה תרגיל יותר אקדמי.
  • בחלק השני, אנו מראים כיצד לבנות מנוע חיפוש סמנטי ממדגם של קורפוס ויקיפדיה במספר שפות.

צִיטָטָה

מאמרי מחקר העושים שימוש במודלים שנחקרו בקולאב זה צריכים לצטט:

מקודד משפטים אוניברסלי רב לשוני לאחזור סמנטי

Yinfei Yang, Daniel Cer, Amin Ahmad, Mandy Guo, Jax Law, Noah Constant, Gustavo Hernandez Abrego, Steve Yuan, Chris Tar, Yun-Hsuan Sung, Brian Strope, and Ray Kurzweil. 2019. arXiv preprint arXiv:1907.04307

להכין

סעיף זה מגדיר את הסביבה לגישה למודול המקודד האוניברסלי למשפטים רב-לשוני וגם מכין קבוצה של משפטים באנגלית ותרגומם. בפרקים הבאים, מודול רב לשוני ישמשו לחישוב דמיון בין השפות.

הגדרת סביבת

%%capture
# Install the latest Tensorflow version.
!pip install tensorflow_text
!pip install bokeh
!pip install simpleneighbors[annoy]
!pip install tqdm

הגדר ייבוא ​​ופונקציות נפוצות

import bokeh
import bokeh.models
import bokeh.plotting
import numpy as np
import os
import pandas as pd
import tensorflow.compat.v2 as tf
import tensorflow_hub as hub
from tensorflow_text import SentencepieceTokenizer
import sklearn.metrics.pairwise

from simpleneighbors import SimpleNeighbors
from tqdm import tqdm
from tqdm import trange

def visualize_similarity(embeddings_1, embeddings_2, labels_1, labels_2,
                         plot_title,
                         plot_width=1200, plot_height=600,
                         xaxis_font_size='12pt', yaxis_font_size='12pt'):

  assert len(embeddings_1) == len(labels_1)
  assert len(embeddings_2) == len(labels_2)

  # arccos based text similarity (Yang et al. 2019; Cer et al. 2019)
  sim = 1 - np.arccos(
      sklearn.metrics.pairwise.cosine_similarity(embeddings_1,
                                                 embeddings_2))/np.pi

  embeddings_1_col, embeddings_2_col, sim_col = [], [], []
  for i in range(len(embeddings_1)):
    for j in range(len(embeddings_2)):
      embeddings_1_col.append(labels_1[i])
      embeddings_2_col.append(labels_2[j])
      sim_col.append(sim[i][j])
  df = pd.DataFrame(zip(embeddings_1_col, embeddings_2_col, sim_col),
                    columns=['embeddings_1', 'embeddings_2', 'sim'])

  mapper = bokeh.models.LinearColorMapper(
      palette=[*reversed(bokeh.palettes.YlOrRd[9])], low=df.sim.min(),
      high=df.sim.max())

  p = bokeh.plotting.figure(title=plot_title, x_range=labels_1,
                            x_axis_location="above",
                            y_range=[*reversed(labels_2)],
                            plot_width=plot_width, plot_height=plot_height,
                            tools="save",toolbar_location='below', tooltips=[
                                ('pair', '@embeddings_1 ||| @embeddings_2'),
                                ('sim', '@sim')])
  p.rect(x="embeddings_1", y="embeddings_2", width=1, height=1, source=df,
         fill_color={'field': 'sim', 'transform': mapper}, line_color=None)

  p.title.text_font_size = '12pt'
  p.axis.axis_line_color = None
  p.axis.major_tick_line_color = None
  p.axis.major_label_standoff = 16
  p.xaxis.major_label_text_font_size = xaxis_font_size
  p.xaxis.major_label_orientation = 0.25 * np.pi
  p.yaxis.major_label_text_font_size = yaxis_font_size
  p.min_border_right = 300

  bokeh.io.output_notebook()
  bokeh.io.show(p)

זהו קוד לוח נוסף שבו אנו מייבאים את דגם ה-ML המיומן מראש שבו נשתמש כדי לקודד טקסט במחברת זו.

# The 16-language multilingual module is the default but feel free
# to pick others from the list and compare the results.
module_url = 'https://tfhub.dev/google/universal-sentence-encoder-multilingual/3'

model = hub.load(module_url)

def embed_text(input):
  return model(input)

דמיין דמיון טקסט בין שפות

עם הטבעות המשפטים כעת ביד, אנו יכולים לדמיין דמיון סמנטי על פני שפות שונות.

הטמעת טקסט מחשוב

תחילה אנו מגדירים קבוצה של משפטים המתורגמים לשפות שונות במקביל. לאחר מכן, אנו מחשבים מראש את ההטבעות עבור כל המשפטים שלנו.

# Some texts of different lengths in different languages.
arabic_sentences = ['كلب', 'الجراء لطيفة.', 'أستمتع بالمشي لمسافات طويلة على طول الشاطئ مع كلبي.']
chinese_sentences = ['狗', '小狗很好。', '我喜欢和我的狗一起沿着海滩散步。']
english_sentences = ['dog', 'Puppies are nice.', 'I enjoy taking long walks along the beach with my dog.']
french_sentences = ['chien', 'Les chiots sont gentils.', 'J\'aime faire de longues promenades sur la plage avec mon chien.']
german_sentences = ['Hund', 'Welpen sind nett.', 'Ich genieße lange Spaziergänge am Strand entlang mit meinem Hund.']
italian_sentences = ['cane', 'I cuccioli sono carini.', 'Mi piace fare lunghe passeggiate lungo la spiaggia con il mio cane.']
japanese_sentences = ['犬', '子犬はいいです', '私は犬と一緒にビーチを散歩するのが好きです']
korean_sentences = ['개', '강아지가 좋다.', '나는 나의 개와 해변을 따라 길게 산책하는 것을 즐긴다.']
russian_sentences = ['собака', 'Милые щенки.', 'Мне нравится подолгу гулять по пляжу со своей собакой.']
spanish_sentences = ['perro', 'Los cachorros son agradables.', 'Disfruto de dar largos paseos por la playa con mi perro.']

# Multilingual example
multilingual_example = ["Willkommen zu einfachen, aber", "verrassend krachtige", "multilingüe", "compréhension du langage naturel", "модели.", "大家是什么意思" , "보다 중요한", ".اللغة التي يتحدثونها"]
multilingual_example_in_en =  ["Welcome to simple yet", "surprisingly powerful", "multilingual", "natural language understanding", "models.", "What people mean", "matters more than", "the language they speak."]
# Compute embeddings.
ar_result = embed_text(arabic_sentences)
en_result = embed_text(english_sentences)
es_result = embed_text(spanish_sentences)
de_result = embed_text(german_sentences)
fr_result = embed_text(french_sentences)
it_result = embed_text(italian_sentences)
ja_result = embed_text(japanese_sentences)
ko_result = embed_text(korean_sentences)
ru_result = embed_text(russian_sentences)
zh_result = embed_text(chinese_sentences)

multilingual_result = embed_text(multilingual_example)
multilingual_in_en_result = embed_text(multilingual_example_in_en)

הדמיית דמיון

עם הטבעת טקסט ביד, נוכל לקחת את מוצר הנקודות שלהם כדי לדמיין עד כמה משפטים דומים בין שפות. צבע כהה יותר מציין שההטבעות דומות מבחינה סמנטית.

דמיון רב לשוני

visualize_similarity(multilingual_in_en_result, multilingual_result,
                     multilingual_example_in_en, multilingual_example,  "Multilingual Universal Sentence Encoder for Semantic Retrieval (Yang et al., 2019)")

דמיון באנגלית-ערבית

visualize_similarity(en_result, ar_result, english_sentences, arabic_sentences, 'English-Arabic Similarity')

דמיון אנגלי-רוסי

visualize_similarity(en_result, ru_result, english_sentences, russian_sentences, 'English-Russian Similarity')

דמיון אנגלית-ספרדית

visualize_similarity(en_result, es_result, english_sentences, spanish_sentences, 'English-Spanish Similarity')

דמיון אנגלית-איטלקי

visualize_similarity(en_result, it_result, english_sentences, italian_sentences, 'English-Italian Similarity')

דמיון איטלקי-ספרדי

visualize_similarity(it_result, es_result, italian_sentences, spanish_sentences, 'Italian-Spanish Similarity')

דמיון אנגלית-סינית

visualize_similarity(en_result, zh_result, english_sentences, chinese_sentences, 'English-Chinese Similarity')

דמיון אנגלי-קוריאני

visualize_similarity(en_result, ko_result, english_sentences, korean_sentences, 'English-Korean Similarity')

דמיון סיני-קוריאני

visualize_similarity(zh_result, ko_result, chinese_sentences, korean_sentences, 'Chinese-Korean Similarity')

ועוד...

הדוגמאות לעיל ניתן להארכה לכל צמד שפות מאנגלית, ערבית, סינית, הולנדית, צרפתית, גרמנית, איטלקית, יפנית, קוריאנית, פולנית, פורטוגזית, רוסית, ספרדית, תאילנדית וטורקית. קידוד שמח!

יצירת מנוע חיפוש סמנטי-דמיון רב לשוני

בעוד שבדוגמה הקודמת דמיינו קומץ משפטים, בחלק זה נבנה אינדקס חיפוש סמנטי של כ-200,000 משפטים מתוך קורפוס של ויקיפדיה. כמחציתם יהיו באנגלית והחצי השני בספרדית כדי להדגים את היכולות הרב-לשוניות של מקודד המשפטים האוניברסלי.

הורד נתונים לאינדקס

ראשית, נוכל להוריד משפטים חדשים בשפות כפול מן קורפוס הפרשנות החדש [1]. ללא אובדן כלליות, גישה זו אמורה לעבוד גם לאינדקס של שאר השפות הנתמכות.

כדי להאיץ את ההדגמה, אנו מגבילים ל-1000 משפטים לכל שפה.

corpus_metadata = [
    ('ar', 'ar-en.txt.zip', 'News-Commentary.ar-en.ar', 'Arabic'),
    ('zh', 'en-zh.txt.zip', 'News-Commentary.en-zh.zh', 'Chinese'),
    ('en', 'en-es.txt.zip', 'News-Commentary.en-es.en', 'English'),
    ('ru', 'en-ru.txt.zip', 'News-Commentary.en-ru.ru', 'Russian'),
    ('es', 'en-es.txt.zip', 'News-Commentary.en-es.es', 'Spanish'),
]

language_to_sentences = {}
language_to_news_path = {}
for language_code, zip_file, news_file, language_name in corpus_metadata:
  zip_path = tf.keras.utils.get_file(
      fname=zip_file,
      origin='http://opus.nlpl.eu/download.php?f=News-Commentary/v11/moses/' + zip_file,
      extract=True)
  news_path = os.path.join(os.path.dirname(zip_path), news_file)
  language_to_sentences[language_code] = pd.read_csv(news_path, sep='\t', header=None)[0][:1000]
  language_to_news_path[language_code] = news_path

  print('{:,} {} sentences'.format(len(language_to_sentences[language_code]), language_name))
Downloading data from http://opus.nlpl.eu/download.php?f=News-Commentary/v11/moses/ar-en.txt.zip
24715264/24714354 [==============================] - 2s 0us/step
1,000 Arabic sentences
Downloading data from http://opus.nlpl.eu/download.php?f=News-Commentary/v11/moses/en-zh.txt.zip
18104320/18101984 [==============================] - 2s 0us/step
1,000 Chinese sentences
Downloading data from http://opus.nlpl.eu/download.php?f=News-Commentary/v11/moses/en-es.txt.zip
28106752/28106064 [==============================] - 2s 0us/step
1,000 English sentences
Downloading data from http://opus.nlpl.eu/download.php?f=News-Commentary/v11/moses/en-ru.txt.zip
24854528/24849511 [==============================] - 2s 0us/step
1,000 Russian sentences
1,000 Spanish sentences

שימוש במודל מאומן מראש כדי להפוך משפטים לוקטורים

אנחנו מחשבי שיבוצים בקבוצות, כך שהם מתאימים ב- RAM של GPU.

# Takes about 3 minutes

batch_size = 2048
language_to_embeddings = {}
for language_code, zip_file, news_file, language_name in corpus_metadata:
  print('\nComputing {} embeddings'.format(language_name))
  with tqdm(total=len(language_to_sentences[language_code])) as pbar:
    for batch in pd.read_csv(language_to_news_path[language_code], sep='\t',header=None, chunksize=batch_size):
      language_to_embeddings.setdefault(language_code, []).extend(embed_text(batch[0]))
      pbar.update(len(batch))
0%|          | 0/1000 [00:00<?, ?it/s]
Computing Arabic embeddings
83178it [00:30, 2768.60it/s]
  0%|          | 0/1000 [00:00<?, ?it/s]
Computing Chinese embeddings
69206it [00:18, 3664.60it/s]
  0%|          | 0/1000 [00:00<?, ?it/s]
Computing English embeddings
238853it [00:37, 6319.00it/s]
  0%|          | 0/1000 [00:00<?, ?it/s]
Computing Russian embeddings
190092it [00:34, 5589.16it/s]
  0%|          | 0/1000 [00:00<?, ?it/s]
Computing Spanish embeddings
238819it [00:41, 5754.02it/s]

בניית אינדקס של וקטורים סמנטיים

אנו משתמשים SimpleNeighbors הספרייה --- המהווה מעטפת עבור לעצבן הספרייה --- לחפש תוצאות ביעילות מן הקורפוס.

%%time

# Takes about 8 minutes

num_index_trees = 40
language_name_to_index = {}
embedding_dimensions = len(list(language_to_embeddings.values())[0][0])
for language_code, zip_file, news_file, language_name in corpus_metadata:
  print('\nAdding {} embeddings to index'.format(language_name))
  index = SimpleNeighbors(embedding_dimensions, metric='dot')

  for i in trange(len(language_to_sentences[language_code])):
    index.add_one(language_to_sentences[language_code][i], language_to_embeddings[language_code][i])

  print('Building {} index with {} trees...'.format(language_name, num_index_trees))
  index.build(n=num_index_trees)
  language_name_to_index[language_name] = index
0%|          | 1/1000 [00:00<02:21,  7.04it/s]
Adding Arabic embeddings to index
100%|██████████| 1000/1000 [02:06<00:00,  7.90it/s]
  0%|          | 1/1000 [00:00<01:53,  8.84it/s]
Building Arabic index with 40 trees...

Adding Chinese embeddings to index
100%|██████████| 1000/1000 [02:05<00:00,  7.99it/s]
  0%|          | 1/1000 [00:00<01:59,  8.39it/s]
Building Chinese index with 40 trees...

Adding English embeddings to index
100%|██████████| 1000/1000 [02:07<00:00,  7.86it/s]
  0%|          | 1/1000 [00:00<02:17,  7.26it/s]
Building English index with 40 trees...

Adding Russian embeddings to index
100%|██████████| 1000/1000 [02:06<00:00,  7.91it/s]
  0%|          | 1/1000 [00:00<02:03,  8.06it/s]
Building Russian index with 40 trees...

Adding Spanish embeddings to index
100%|██████████| 1000/1000 [02:07<00:00,  7.84it/s]
Building Spanish index with 40 trees...
CPU times: user 11min 21s, sys: 2min 14s, total: 13min 35s
Wall time: 10min 33s

%%time

# Takes about 13 minutes

num_index_trees = 60
print('Computing mixed-language index')
combined_index = SimpleNeighbors(embedding_dimensions, metric='dot')
for language_code, zip_file, news_file, language_name in corpus_metadata:
  print('Adding {} embeddings to mixed-language index'.format(language_name))
  for i in trange(len(language_to_sentences[language_code])):
    annotated_sentence = '({}) {}'.format(language_name, language_to_sentences[language_code][i])
    combined_index.add_one(annotated_sentence, language_to_embeddings[language_code][i])

print('Building mixed-language index with {} trees...'.format(num_index_trees))
combined_index.build(n=num_index_trees)
0%|          | 1/1000 [00:00<02:00,  8.29it/s]
Computing mixed-language index
Adding Arabic embeddings to mixed-language index
100%|██████████| 1000/1000 [02:06<00:00,  7.92it/s]
  0%|          | 1/1000 [00:00<02:24,  6.89it/s]
Adding Chinese embeddings to mixed-language index
100%|██████████| 1000/1000 [02:05<00:00,  7.95it/s]
  0%|          | 1/1000 [00:00<02:05,  7.98it/s]
Adding English embeddings to mixed-language index
100%|██████████| 1000/1000 [02:06<00:00,  7.88it/s]
  0%|          | 1/1000 [00:00<02:18,  7.20it/s]
Adding Russian embeddings to mixed-language index
100%|██████████| 1000/1000 [02:04<00:00,  8.03it/s]
  0%|          | 1/1000 [00:00<02:17,  7.28it/s]
Adding Spanish embeddings to mixed-language index
100%|██████████| 1000/1000 [02:06<00:00,  7.90it/s]
Building mixed-language index with 60 trees...
CPU times: user 11min 18s, sys: 2min 13s, total: 13min 32s
Wall time: 10min 30s

ודא שמנוע החיפוש של הדמיון הסמנטי עובד

בחלק זה נדגים:

  1. יכולות חיפוש סמנטי: שליפת משפטים מהקורפוס הדומים מבחינה סמנטית לשאילתה הנתונה.
  2. יכולות רב-לשוניות: עושים זאת במספר שפות כאשר הם מבצעים שאילתות בין שפת ושפת אינדקס
  3. יכולות חוצות לשוניות: הנפקת שאילתות בשפה שונה מזו של הקורפוס המאונדקס
  4. קורפוס של שפות מעורבות: כל האמור לעיל באינדקס יחיד המכיל ערכים מכל השפות

יכולות חיפוש חוצה לשוניות סמנטיות

בחלק זה אנו מראים כיצד לשחזר משפטים הקשורים לקבוצה של משפטים לדוגמה באנגלית. דברים שכדאי לנסות:

  • נסה כמה משפטים שונים לדוגמה
  • נסה לשנות את מספר התוצאות שהוחזרו (הן מוחזרות לפי סדר הדמיון)
  • נסה יכולות לחצות לשוני ידי החזרת תוצאות בשפות שונות (מומלץ להשתמש Google Translate על כמה תוצאות ל שפת האם שלך עבור בדיקת שפיות)

English sentences similar to: "The stock market fell four points."
['Nobel laureate Amartya Sen attributed the European crisis to four failures – political, economic, social, and intellectual.',
 'Just last December, fellow economists Martin Feldstein and Nouriel Roubini each penned op-eds bravely questioning bullish market sentiment, sensibly pointing out gold’s risks.',
 'His ratings have dipped below 50% for the first time.',
 'As a result, markets were deregulated, making it easier to trade assets that were perceived to be safe, but were in fact not.',
 'Consider the advanced economies.',
 'But the agreement has three major flaws.',
 'This “predetermined equilibrium” thinking – reflected in the view that markets always self-correct – led to policy paralysis until the Great Depression, when John Maynard Keynes’s argument for government intervention to address unemployment and output gaps gained traction.',
 'Officials underestimated tail risks.',
 'Consider a couple of notorious examples.',
 'Stalin was content to settle for an empire in Eastern Europe.']

יכולות קורפוס מעורב

כעת נוציא שאילתה באנגלית, אך התוצאות יגיעו מכל אחת מהשפות שנוספו לאינדקס.

English sentences similar to: "The stock market fell four points."
['Nobel laureate Amartya Sen attributed the European crisis to four failures – political, economic, social, and intellectual.',
 'It was part of the 1945 consensus.',
 'The end of the East-West ideological divide and the end of absolute faith in markets are historical turning points.',
 'Just last December, fellow economists Martin Feldstein and Nouriel Roubini each penned op-eds bravely questioning bullish market sentiment, sensibly pointing out gold’s risks.',
 'His ratings have dipped below 50% for the first time.',
 'As a result, markets were deregulated, making it easier to trade assets that were perceived to be safe, but were in fact not.',
 'Consider the advanced economies.',
 'Since their articles appeared, the price of gold has moved up still further.',
 'But the agreement has three major flaws.',
 'Gold prices even hit a record-high $1,300 recently.',
 'This “predetermined equilibrium” thinking – reflected in the view that markets always self-correct – led to policy paralysis until the Great Depression, when John Maynard Keynes’s argument for government intervention to address unemployment and output gaps gained traction.',
 'What Failed in 2008?',
 'Officials underestimated tail risks.',
 'Consider a couple of notorious examples.',
 'One of these species, orange roughy, has been caught commercially for only around a quarter-century, but already is being fished to the point of collapse.',
 'Meanwhile, policymakers were lulled into complacency by the widespread acceptance of economic theories such as the “efficient-market hypothesis,” which assumes that investors act rationally and use all available information when making their decisions.',
 'Stalin was content to settle for an empire in Eastern Europe.',
 'Intelligence assets have been redirected.',
 'A new wave of what the economist Joseph Schumpeter famously called “creative destruction” is under way: even as central banks struggle to maintain stability by flooding markets with liquidity, credit to business and households is shrinking.',
 'It all came about in a number of ways.',
 'The UN, like the dream of European unity, was also part of the 1945 consensus.',
 'The End of 1945',
 'The Global Economy’s New Path',
 'But this scenario failed to materialize.',
 'Gold prices are extremely sensitive to global interest-rate movements.',
 'Fukushima has presented the world with a far-reaching, fundamental choice.',
 'It was Japan, the high-tech country par excellence (not the latter-day Soviet Union) that proved unable to take adequate precautions to avert disaster in four reactor blocks.',
 'Some European academics tried to argue that there was no need for US-like fiscal transfers, because any desired degree of risk sharing can, in theory, be achieved through financial markets.',
 '$10,000 Gold?',
 'One answer, of course, is a complete collapse of the US dollar.',
 '1929 or 1989?',
 'The goods we made were what economists call “rival" and “excludible" commodities.',
 'This dream quickly faded when the Cold War divided the world into two hostile blocs. But in some ways the 1945 consensus, in the West, was strengthened by Cold War politics.',
 'The first flaw is that the spending reductions are badly timed: coming as they do when the US economy is weak, they risk triggering another recession.',
 'One successful gold investor recently explained to me that stock prices languished for a more than a decade before the Dow Jones index crossed the 1,000 mark in the early 1980’s.',
 'Eichengreen traces our tepid response to the crisis to the triumph of monetarist economists, the disciples of Milton Friedman, over their Keynesian and Minskyite peers – at least when it comes to interpretations of the causes and consequences of the Great Depression.',
 "However, America's unilateral options are limited.",
 'Once it was dark, a screen was set up and Mark showed home videos from space.',
 'These aspirations were often voiced in the United Nations, founded in 1945.',
 'Then I got distracted for about 40 years.']

נסה את השאילתות שלך:

English sentences similar to: "The stock market fell four points."
['(Chinese) 新兴市场的号角',
 '(English) It was part of the 1945 consensus.',
 '(Russian) Брюссель. Цунами, пронёсшееся по финансовым рынкам, является глобальной катастрофой.',
 '(Arabic) هناك أربعة شروط مسبقة لتحقيق النجاح الأوروبي في أفغانستان:',
 '(Spanish) Su índice de popularidad ha caído por primera vez por debajo del 50 por ciento.',
 '(English) His ratings have dipped below 50% for the first time.',
 '(Russian) Впервые его рейтинг опустился ниже 50%.',
 '(English) As a result, markets were deregulated, making it easier to trade assets that were perceived to be safe, but were in fact not.',
 '(Arabic) وكانت التطورات التي شهدتها سوق العمل أكثر تشجيعا، فهي على النقيض من أسواق الأصول تعكس النتائج وليس التوقعات. وهنا أيضاً كانت الأخبار طيبة. فقد أصبحت سوق العمل أكثر إحكاما، حيث ظلت البطالة عند مستوى 3.5% وكانت نسبة الوظائف إلى الطلبات المقدمة فوق مستوى التعادل.',
 '(Russian) Это было частью консенсуса 1945 года.',
 '(English) Consider the advanced economies.',
 '(English) Since their articles appeared, the price of gold has moved up still further.',
 '(Russian) Тогда они не только смогут накормить свои семьи, но и начать получать рыночную прибыль и откладывать деньги на будущее.',
 '(English) Gold prices even hit a record-high $1,300 recently.',
 '(Chinese) 另一种金融危机',
 '(Russian) Европейская мечта находится в кризисе.',
 '(English) What Failed in 2008?',
 '(Spanish) Pero el acuerdo alcanzado tiene tres grandes defectos.',
 '(English) Officials underestimated tail risks.',
 '(English) Consider a couple of notorious examples.',
 '(Spanish) Los mercados financieros pueden ser frágiles y ofrecen muy poca capacidad de compartir los riesgos relacionados con el ingreso de los trabajadores, que constituye la mayor parte de la renta de cualquier economía avanzada.',
 '(Chinese) 2008年败在何处?',
 '(Spanish) Consideremos las economías avanzadas.',
 '(Spanish) Los bienes producidos se caracterizaron por ser, como señalaron algunos economistas, mercancías “rivales” y “excluyentes”.',
 '(Arabic) إغلاق الفجوة الاستراتيجية في أوروبا',
 '(English) Stalin was content to settle for an empire in Eastern Europe.',
 '(English) Intelligence assets have been redirected.',
 '(Spanish) Hoy, envalentonados por la apreciación continua, algunos están sugiriendo que el oro podría llegar incluso a superar esa cifra.',
 '(Russian) Цены на золото чрезвычайно чувствительны к мировым движениям процентных ставок.',
 '(Russian) Однако у достигнутой договоренности есть три основных недостатка.']

נושאים נוספים

רב לשוני

לבסוף, אנו ממליצים לכם לנסות שאילתות בכל אחת מהשפות הנתמכות: אנגלית, ערבית, סינית, הולנדית, צרפתית, גרמנית, איטלקית, יפנית, קוריאנית, פולנית, פורטוגזית, רוסית, ספרדית, תאילנדית וטורקית.

כמו כן, למרות שהוספנו לאינדקס רק בתת-קבוצה של השפות, אתה יכול גם להוסיף לאינדקס תוכן בכל אחת מהשפות הנתמכות.

וריאציות דגם

אנו מציעים וריאציות של דגמי המקודד האוניברסלי המותאמים לדברים שונים כמו זיכרון, חביון ו/או איכות. אנא אל תהסס להתנסות איתם כדי למצוא אחד מתאים.

ספריות השכנות הקרובות ביותר

השתמשנו ב-Anny כדי לחפש ביעילות את השכנים הקרובים ביותר. עיין בסעיף הפשרות לקרוא על מספר העצים (זיכרון-תלוי) ואת מספר הפריטים לחפש (latency תלוי) --- SimpleNeighbors מאפשר רק כדי לשלוט על מספר העצים, אבל שיפוץ הקוד לעצבן שימוש במישרין צריך להיות פשוט, רק רצינו לשמור על קוד זה פשוט ככל האפשר עבור המשתמש הכללי.

אם לעצבן לא בקנה מידה עבור היישום שלך, אנא בדוק גם FAISS .

כל הכבוד לבנות את היישומים הסמנטיים הרב-לשוניים שלך!

[1] J. Tiedemann, 2012, במקביל נתונים, כלים ופני OPUS . במסגרת הכנס הבינלאומי ה-8 בנושא משאבי שפה והערכה (LREC 2012)