O Dia da Comunidade de ML é dia 9 de novembro! Junte-nos para atualização de TensorFlow, JAX, e mais Saiba mais

Super resolução com TensorFlow Lite

Ver no TensorFlow.org Executar no Google Colab Ver fonte no GitHub Baixar caderno Veja o modelo TF Hub

Visão geral

A tarefa de recuperar uma imagem de alta resolução (HR) de sua contraparte de baixa resolução é comumente chamada de Super Resolução de Imagem Única (SISR).

O modelo utilizado aqui é ESRGAN ( ESRGAN: melhoradas de super-resolução Generative Adversarial Networks ). E vamos usar o TensorFlow Lite para executar inferência no modelo pré-treinado.

O modelo TFLite é convertida a partir desta implementação hospedado em TF Hub. Observe que o modelo que convertemos upsamples uma imagem de baixa resolução 50x50 para uma imagem de alta resolução 200x200 (fator de escala = 4). Se você quiser um tamanho de entrada ou fator de escala diferente, precisará reconverter ou treinar novamente o modelo original.

Configurar

Vamos instalar as bibliotecas necessárias primeiro.

pip install matplotlib tensorflow tensorflow-hub

Importar dependências.

import tensorflow as tf
import tensorflow_hub as hub
import matplotlib.pyplot as plt
print(tf.__version__)
2.6.0

Baixe e converta o modelo ESRGAN

model = hub.load("https://tfhub.dev/captain-pool/esrgan-tf2/1")
concrete_func = model.signatures[tf.saved_model.DEFAULT_SERVING_SIGNATURE_DEF_KEY]
concrete_func.inputs[0].set_shape([1, 50, 50, 3])
converter = tf.lite.TFLiteConverter.from_concrete_functions([concrete_func])
converter.optimizations = [tf.lite.Optimize.DEFAULT]
tflite_model = converter.convert()

# Save the TF Lite model.
with tf.io.gfile.GFile('ESRGAN.tflite', 'wb') as f:
  f.write(tflite_model)

esrgan_model_path = './ESRGAN.tflite'
2021-10-07 11:17:41.401741: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:351] Ignored output_format.
2021-10-07 11:17:41.401802: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:354] Ignored drop_control_dependency.

Baixe uma imagem de teste (cabeça de inseto).

test_img_path = tf.keras.utils.get_file('lr.jpg', 'https://raw.githubusercontent.com/tensorflow/examples/master/lite/examples/super_resolution/android/app/src/main/assets/lr-1.jpg')
Downloading data from https://raw.githubusercontent.com/tensorflow/examples/master/lite/examples/super_resolution/android/app/src/main/assets/lr-1.jpg
16384/6432 [============================================================================] - 0s 0us/step

Gere uma imagem de super resolução usando o TensorFlow Lite

lr = tf.io.read_file(test_img_path)
lr = tf.image.decode_jpeg(lr)
lr = tf.expand_dims(lr, axis=0)
lr = tf.cast(lr, tf.float32)

# Load TFLite model and allocate tensors.
interpreter = tf.lite.Interpreter(model_path=esrgan_model_path)
interpreter.allocate_tensors()

# Get input and output tensors.
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()

# Run the model
interpreter.set_tensor(input_details[0]['index'], lr)
interpreter.invoke()

# Extract the output and postprocess it
output_data = interpreter.get_tensor(output_details[0]['index'])
sr = tf.squeeze(output_data, axis=0)
sr = tf.clip_by_value(sr, 0, 255)
sr = tf.round(sr)
sr = tf.cast(sr, tf.uint8)

Visualize o resultado

lr = tf.cast(tf.squeeze(lr, axis=0), tf.uint8)
plt.figure(figsize = (1, 1))
plt.title('LR')
plt.imshow(lr.numpy());

plt.figure(figsize=(10, 4))
plt.subplot(1, 2, 1)        
plt.title(f'ESRGAN (x4)')
plt.imshow(sr.numpy());

bicubic = tf.image.resize(lr, [200, 200], tf.image.ResizeMethod.BICUBIC)
bicubic = tf.cast(bicubic, tf.uint8)
plt.subplot(1, 2, 2)   
plt.title('Bicubic')
plt.imshow(bicubic.numpy());

png

png

Benchmarks de desempenho

Números de benchmark de desempenho são gerados com a ferramenta descrita aqui .

Nome do Modelo Tamanho do modelo Dispositivo CPU GPU
super resolução (ESRGAN) 4,8 Mb Pixel 3 586,8ms * 128,6ms
Pixel 4 385,1ms * 130,3ms

* 4 fios utilizados