TensorFlow Lite iOS image classification example

This document walks through the code of a simple iOS mobile application that demonstrates image classification using the device camera.

The application code is located in the Tensorflow examples repository, along with instructions for building and deploying the app.

Example application

Explore the code

The app is written entirely in Swift and uses the TensorFlow Lite Swift library for performing image classification.

We're now going to walk through the most important parts of the sample code.

Get camera input

The app's main view is represented by the ViewController class in ViewController.swift, which we extend with functionality from the CameraFeedManagerDelegate protocol to process frames from a camera feed. To run inference on a given frame, we implement the didOutput method, which is called whenever a frame is available from the camera.

Our implementation of didOutput includes a call to the runModel method of a ModelDataHandler instance. As we will see below, this class gives us access to the TensorFlow Lite Interpreter class for performing image classification.

extension ViewController: CameraFeedManagerDelegate {

  func didOutput(pixelBuffer: CVPixelBuffer) {
    let currentTimeMs = Date().timeIntervalSince1970 * 1000
    guard (currentTimeMs - previousInferenceTimeMs) >= delayBetweenInferencesMs else { return }
    previousInferenceTimeMs = currentTimeMs

    // Pass the pixel buffer to TensorFlow Lite to perform inference.
    result = modelDataHandler?.runModel(onFrame: pixelBuffer)

    // Display results by handing off to the InferenceViewController.
    DispatchQueue.main.async {
      let resolution = CGSize(width: CVPixelBufferGetWidth(pixelBuffer), height: CVPixelBufferGetHeight(pixelBuffer))
      self.inferenceViewController?.inferenceResult = self.result
      self.inferenceViewController?.resolution = resolution


The Swift class ModelDataHandler, defined in ModelDataHandler.swift, handles all data preprocessing and makes calls to run inference on a given frame using the TensorFlow Lite Interpreter. It then formats the inferences obtained from invoking the Interpreter and returns the top N results for a successful inference.

The following sections show how this works.


The init method creates a new instance of the Interpreter and loads the specified model and labels files from the app's main bundle.

init?(modelFileInfo: FileInfo, labelsFileInfo: FileInfo, threadCount: Int = 1) {
  let modelFilename = modelFileInfo.name

  // Construct the path to the model file.
  guard let modelPath = Bundle.main.path(
    forResource: modelFilename,
    ofType: modelFileInfo.extension
  ) else {
    print("Failed to load the model file with name: \(modelFilename).")
    return nil

  // Specify the options for the `Interpreter`.
  self.threadCount = threadCount
  var options = InterpreterOptions()
  options.threadCount = threadCount
  options.isErrorLoggingEnabled = true
  do {
    // Create the `Interpreter`.
    interpreter = try Interpreter(modelPath: modelPath, options: options)
  } catch let error {
    print("Failed to create the interpreter with error: \(error.localizedDescription)")
    return nil
  // Load the classes listed in the labels file.
  loadLabels(fileInfo: labelsFileInfo)

Process input

The method runModel accepts a CVPixelBuffer of camera data, which can be obtained from the didOutput method defined in ViewController.

We crop the image to the size that the model was trained on. For example, 224x224 for the MobileNet v1 model.

The image buffer contains an encoded color for each pixel in BGRA format (where A represents Alpha, or transparency). Our model expects the format to be RGB, so we use the following helper method to remove the alpha component from the image buffer to get the RGB data representation:

private let alphaComponent = (baseOffset: 4, moduloRemainder: 3)
private func rgbDataFromBuffer(
  _ buffer: CVPixelBuffer,
  byteCount: Int,
  isModelQuantized: Bool
) -> Data? {
  CVPixelBufferLockBaseAddress(buffer, .readOnly)
  defer { CVPixelBufferUnlockBaseAddress(buffer, .readOnly) }
  guard let mutableRawPointer = CVPixelBufferGetBaseAddress(buffer) else {
    return nil
  let count = CVPixelBufferGetDataSize(buffer)
  let bufferData = Data(bytesNoCopy: mutableRawPointer, count: count, deallocator: .none)
  var rgbBytes = [UInt8](repeating: 0, count: byteCount)
  var index = 0
  for component in bufferData.enumerated() {
    let offset = component.offset
    let isAlphaComponent = (offset % alphaComponent.baseOffset) == alphaComponent.moduloRemainder
    guard !isAlphaComponent else { continue }
    rgbBytes[index] = component.element
    index += 1
  if isModelQuantized { return Data(bytes: rgbBytes) }
  return Data(copyingBufferOf: rgbBytes.map { Float($0) / 255.0 })

Run inference

Here's the code for getting the RGB data representation of the pixel buffer, copying that data to the input Tensor, and running inference by invoking the Interpreter:

let outputTensor: Tensor
do {
  // Allocate memory for the model's input `Tensor`s.
  try interpreter.allocateTensors()
  let inputTensor = try interpreter.input(at: 0)

  // Remove the alpha component from the image buffer to get the RGB data.
  guard let rgbData = rgbDataFromBuffer(
    byteCount: batchSize * inputWidth * inputHeight * inputChannels,
    isModelQuantized: inputTensor.dataType == .uInt8
  ) else {
    print("Failed to convert the image buffer to RGB data.")

  // Copy the RGB data to the input `Tensor`.
  try interpreter.copy(rgbData, toInputAt: 0)

  // Run inference by invoking the `Interpreter`.
  try interpreter.invoke()

  // Get the output `Tensor` to process the inference results.
  outputTensor = try interpreter.output(at: 0)
} catch let error {
  print("Failed to invoke the interpreter with error: \(error.localizedDescription)")

Process results

If the model is quantized, the output Tensor contains one UInt8 value per class label. Dequantize the results so the values are floats, ranging from 0.0 to 1.0, where each value represents the confidence that a label is present in the image:

guard let quantization = outputTensor.quantizationParameters else {
  print("No results returned because the quantization values for the output tensor are nil.")

// Get the quantized results from the output tensor's `data` property.
let quantizedResults = [UInt8](outputTensor.data)

// Dequantize the results using the quantization values.
let results = quantizedResults.map {
  quantization.scale * Float(Int($0) - quantization.zeroPoint)

Next, the results are sorted to get the top N results (where N is resultCount):

// Create a zipped array of tuples [(labelIndex: Int, confidence: Float)].
let zippedResults = zip(labels.indices, results)

// Sort the zipped results by confidence value in descending order.
let sortedResults = zippedResults.sorted { $0.1 > $1.1 }.prefix(resultCount)

// Get the top N `Inference` results.
let topNInferences = sortedResults.map { result in Inference(confidence: result.1, label: labels[result.0]) }

Display results

The file InferenceViewController.swift defines the app's UI. A UITableView is used to display the results.