การหาปริมาณช่วงไดนามิกหลังการฝึก

ดูบน TensorFlow.org ทำงานใน Google Colab ดูแหล่งที่มาบน GitHub ดาวน์โหลดโน๊ตบุ๊ค ดูรุ่น TF Hub

ภาพรวม

TensorFlow Lite ขณะนี้สนับสนุนการแปลงน้ำหนักถึง 8 บิตความแม่นยำเป็นส่วนหนึ่งของการแปลงรูปแบบจาก graphdefs tensorflow เป็นรูปแบบบัฟเฟอร์แบน TensorFlow Lite ของ การหาปริมาณช่วงไดนามิกทำให้ขนาดโมเดลลดลง 4 เท่า นอกจากนี้ TFLite ยังรองรับการควอนไทซ์แบบทันทีและดีควอนไลซ์ของการเปิดใช้งานเพื่อให้สามารถ:

  1. การใช้เคอร์เนล quantized เพื่อการใช้งานที่รวดเร็วขึ้นเมื่อพร้อมใช้งาน
  2. การผสมเมล็ดแบบทศนิยมกับเมล็ดในเชิงปริมาณสำหรับส่วนต่างๆ ของกราฟ

การเปิดใช้งานจะถูกเก็บไว้ในจุดลอยตัวเสมอ สำหรับ ops ที่สนับสนุนเคอร์เนล quantized การเปิดใช้งานจะถูกกำหนดปริมาณเป็น 8 บิตของความแม่นยำแบบไดนามิกก่อนการประมวลผลและจะถูกลดขนาดลงเพื่อให้มีความแม่นยำแบบลอยหลังการประมวลผล ขึ้นอยู่กับรุ่นที่กำลังแปลง สิ่งนี้สามารถให้ความเร็วเหนือการคำนวณจุดทศนิยมที่แท้จริง

ในทางตรงกันข้ามกับ ควอนฝึกอบรมตระหนักถึง น้ำหนักที่มีการฝึกอบรม quantized โพสต์และการเปิดใช้งานจะถูก quantized แบบไดนามิกที่อนุมานในวิธีการนี้ ดังนั้น ตุ้มน้ำหนักของแบบจำลองจึงไม่ถูกฝึกใหม่เพื่อชดเชยข้อผิดพลาดที่เกิดจากการควอนไทเซชัน สิ่งสำคัญคือต้องตรวจสอบความถูกต้องของแบบจำลองเชิงปริมาณเพื่อให้แน่ใจว่าการย่อยสลายเป็นที่ยอมรับได้

บทช่วยสอนนี้จะฝึกโมเดล MNIST ตั้งแต่เริ่มต้น ตรวจสอบความแม่นยำใน TensorFlow แล้วแปลงโมเดลเป็นบัฟเฟอร์แบบแบน Tensorflow Lite พร้อมการหาปริมาณช่วงไดนามิก สุดท้ายจะตรวจสอบความถูกต้องของแบบจำลองที่แปลงแล้วและเปรียบเทียบกับรุ่นลูกลอยดั้งเดิม

สร้างแบบจำลอง MNIST

ติดตั้ง

import logging
logging.getLogger("tensorflow").setLevel(logging.DEBUG)

import tensorflow as tf
from tensorflow import keras
import numpy as np
import pathlib

ฝึกโมเดล TensorFlow

# Load MNIST dataset
mnist = keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

# Normalize the input image so that each pixel value is between 0 to 1.
train_images = train_images / 255.0
test_images = test_images / 255.0

# Define the model architecture
model = keras.Sequential([
  keras.layers.InputLayer(input_shape=(28, 28)),
  keras.layers.Reshape(target_shape=(28, 28, 1)),
  keras.layers.Conv2D(filters=12, kernel_size=(3, 3), activation=tf.nn.relu),
  keras.layers.MaxPooling2D(pool_size=(2, 2)),
  keras.layers.Flatten(),
  keras.layers.Dense(10)
])

# Train the digit classification model
model.compile(optimizer='adam',
              loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])
model.fit(
  train_images,
  train_labels,
  epochs=1,
  validation_data=(test_images, test_labels)
)
1875/1875 [==============================] - 6s 2ms/step - loss: 0.3260 - accuracy: 0.9063 - val_loss: 0.1721 - val_accuracy: 0.9499
<keras.callbacks.History at 0x7fb7a1c4ed90>

ตัวอย่างเช่น เนื่องจากคุณฝึกโมเดลสำหรับยุคเดียว ดังนั้นโมเดลจึงฝึกฝนให้มีความแม่นยำเพียง ~96%

แปลงเป็นรุ่น TensorFlow Lite

ใช้งูหลาม TFLiteConverter ตอนนี้คุณสามารถแปลงรูปแบบการฝึกอบรมในรูปแบบ TensorFlow Lite

ตอนนี้โหลดรูปแบบโดยใช้ TFLiteConverter :

converter = tf.lite.TFLiteConverter.from_keras_model(model)
tflite_model = converter.convert()
2021-11-02 11:23:32.211024: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them.
INFO:tensorflow:Assets written to: /tmp/tmpua453ven/assets
2021-11-02 11:23:32.640259: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:351] Ignored output_format.
2021-11-02 11:23:32.640302: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:354] Ignored drop_control_dependency.

เขียนออกมาเป็นไฟล์ tflite:

tflite_models_dir = pathlib.Path("/tmp/mnist_tflite_models/")
tflite_models_dir.mkdir(exist_ok=True, parents=True)
tflite_model_file = tflite_models_dir/"mnist_model.tflite"
tflite_model_file.write_bytes(tflite_model)
84500

เพื่อ quantize รูปแบบในการส่งออกตั้งค่า optimizations ธงเพื่อเพิ่มประสิทธิภาพสำหรับขนาด:

converter.optimizations = [tf.lite.Optimize.DEFAULT]
tflite_quant_model = converter.convert()
tflite_model_quant_file = tflite_models_dir/"mnist_model_quant.tflite"
tflite_model_quant_file.write_bytes(tflite_quant_model)
INFO:tensorflow:Assets written to: /tmp/tmpaw0wsb_y/assets
INFO:tensorflow:Assets written to: /tmp/tmpaw0wsb_y/assets
2021-11-02 11:23:33.235475: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:351] Ignored output_format.
2021-11-02 11:23:33.235512: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:354] Ignored drop_control_dependency.
23904

หมายเหตุวิธีแฟ้มผลเป็นประมาณ 1/4 ขนาด

ls -lh {tflite_models_dir}
total 136K
-rw-rw-r-- 1 kbuilder kbuilder 83K Nov  2 11:23 mnist_model.tflite
-rw-rw-r-- 1 kbuilder kbuilder 24K Nov  2 11:23 mnist_model_quant.tflite
-rw-rw-r-- 1 kbuilder kbuilder 25K Nov  2 11:20 mnist_model_quant_16x8.tflite

เรียกใช้รุ่น TFLite

เรียกใช้โมเดล TensorFlow Lite โดยใช้ Python TensorFlow Lite Interpreter

โหลดแบบจำลองลงในล่าม

interpreter = tf.lite.Interpreter(model_path=str(tflite_model_file))
interpreter.allocate_tensors()
interpreter_quant = tf.lite.Interpreter(model_path=str(tflite_model_quant_file))
interpreter_quant.allocate_tensors()

ทดสอบโมเดลในภาพเดียว

test_image = np.expand_dims(test_images[0], axis=0).astype(np.float32)

input_index = interpreter.get_input_details()[0]["index"]
output_index = interpreter.get_output_details()[0]["index"]

interpreter.set_tensor(input_index, test_image)
interpreter.invoke()
predictions = interpreter.get_tensor(output_index)
import matplotlib.pylab as plt

plt.imshow(test_images[0])
template = "True:{true}, predicted:{predict}"
_ = plt.title(template.format(true= str(test_labels[0]),
                              predict=str(np.argmax(predictions[0]))))
plt.grid(False)

png

ประเมินรุ่น

# A helper function to evaluate the TF Lite model using "test" dataset.
def evaluate_model(interpreter):
  input_index = interpreter.get_input_details()[0]["index"]
  output_index = interpreter.get_output_details()[0]["index"]

  # Run predictions on every image in the "test" dataset.
  prediction_digits = []
  for test_image in test_images:
    # Pre-processing: add batch dimension and convert to float32 to match with
    # the model's input data format.
    test_image = np.expand_dims(test_image, axis=0).astype(np.float32)
    interpreter.set_tensor(input_index, test_image)

    # Run inference.
    interpreter.invoke()

    # Post-processing: remove batch dimension and find the digit with highest
    # probability.
    output = interpreter.tensor(output_index)
    digit = np.argmax(output()[0])
    prediction_digits.append(digit)

  # Compare prediction results with ground truth labels to calculate accuracy.
  accurate_count = 0
  for index in range(len(prediction_digits)):
    if prediction_digits[index] == test_labels[index]:
      accurate_count += 1
  accuracy = accurate_count * 1.0 / len(prediction_digits)

  return accuracy
print(evaluate_model(interpreter))
0.9499

ทำการประเมินซ้ำในแบบจำลองช่วงไดนามิกของช่วงไดนามิกเพื่อรับ:

print(evaluate_model(interpreter_quant))
0.95

ในตัวอย่างนี้ โมเดลที่บีบอัดไม่มีความแตกต่างในด้านความแม่นยำ

การเพิ่มประสิทธิภาพโมเดลที่มีอยู่

Resnets ที่มีเลเยอร์ก่อนการเปิดใช้งาน (Resnet-v2) นั้นใช้กันอย่างแพร่หลายสำหรับการใช้งานด้านการมองเห็น Pre-ผ่านการฝึกอบรมกราฟแช่แข็ง RESNET-v2-101 สามารถใช้ได้บน Tensorflow Hub

คุณสามารถแปลงกราฟที่ตรึงไว้เป็นบัฟเฟอร์แบบแบน TensorFLow Lite ด้วยการหาปริมาณโดย:

import tensorflow_hub as hub

resnet_v2_101 = tf.keras.Sequential([
  keras.layers.InputLayer(input_shape=(224, 224, 3)),
  hub.KerasLayer("https://tfhub.dev/google/imagenet/resnet_v2_101/classification/4")
])

converter = tf.lite.TFLiteConverter.from_keras_model(resnet_v2_101)
# Convert to TF Lite without quantization
resnet_tflite_file = tflite_models_dir/"resnet_v2_101.tflite"
resnet_tflite_file.write_bytes(converter.convert())
WARNING:tensorflow:Compiled the loaded model, but the compiled metrics have yet to be built. `model.compile_metrics` will be empty until you train or evaluate the model.
WARNING:tensorflow:Compiled the loaded model, but the compiled metrics have yet to be built. `model.compile_metrics` will be empty until you train or evaluate the model.
INFO:tensorflow:Assets written to: /tmp/tmpxtji1amp/assets
INFO:tensorflow:Assets written to: /tmp/tmpxtji1amp/assets
2021-11-02 11:23:57.616139: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:351] Ignored output_format.
2021-11-02 11:23:57.616201: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:354] Ignored drop_control_dependency.
178509352
# Convert to TF Lite with quantization
converter.optimizations = [tf.lite.Optimize.DEFAULT]
resnet_quantized_tflite_file = tflite_models_dir/"resnet_v2_101_quantized.tflite"
resnet_quantized_tflite_file.write_bytes(converter.convert())
WARNING:tensorflow:Compiled the loaded model, but the compiled metrics have yet to be built. `model.compile_metrics` will be empty until you train or evaluate the model.
WARNING:tensorflow:Compiled the loaded model, but the compiled metrics have yet to be built. `model.compile_metrics` will be empty until you train or evaluate the model.
INFO:tensorflow:Assets written to: /tmp/tmpg169iato/assets
INFO:tensorflow:Assets written to: /tmp/tmpg169iato/assets
2021-11-02 11:24:12.965799: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:351] Ignored output_format.
2021-11-02 11:24:12.965851: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:354] Ignored drop_control_dependency.
46256864
ls -lh {tflite_models_dir}/*.tflite
-rw-rw-r-- 1 kbuilder kbuilder  83K Nov  2 11:23 /tmp/mnist_tflite_models/mnist_model.tflite
-rw-rw-r-- 1 kbuilder kbuilder  24K Nov  2 11:23 /tmp/mnist_tflite_models/mnist_model_quant.tflite
-rw-rw-r-- 1 kbuilder kbuilder  25K Nov  2 11:20 /tmp/mnist_tflite_models/mnist_model_quant_16x8.tflite
-rw-rw-r-- 1 kbuilder kbuilder 171M Nov  2 11:23 /tmp/mnist_tflite_models/resnet_v2_101.tflite
-rw-rw-r-- 1 kbuilder kbuilder  45M Nov  2 11:24 /tmp/mnist_tflite_models/resnet_v2_101_quantized.tflite

ขนาดโมเดลลดลงจาก 171 MB เป็น 43 MB ความถูกต้องของรูปแบบนี้ใน imagenet สามารถประเมินการใช้สคริปต์ที่ให้ไว้สำหรับ TFLite วัดความถูกต้อง

ความแม่นยำสูงสุดของโมเดล 1 อันดับแรกคือ 76.8 ซึ่งเหมือนกับโมเดลทศนิยม