機械学習モデルをモバイル デバイスや IoT デバイスにデプロイします

TensorFlow Lite は、デバイス上での推論を可能にする、オープンソースのディープ ラーニング フレームワークです。

ガイドを見る

TensorFlow Lite の概念およびコンポーネントについて説明するガイドです。

例を見る

TensorFlow Lite を使用している Android アプリおよび iOS アプリをご紹介します。

モデルを見る

事前トレーニング済みのモデルを簡単にデプロイできます。

仕組み

モデルの選択

新しいモデルを選ぶか、既存のモデルを再トレーニングします。

変換

TensorFlow Lite コンバータを使って、TensorFlow モデルを圧縮された FlatBuffer に変換します。

デプロイ

圧縮された .tflite ファイルを、モバイル デバイスまたは組み込みデバイスに読み込みます。

最適化

32 ビット浮動小数点数をより効率的な 8 ビット整数に変換することによって量子化するか、または GPU で実行します。

よくある問題への解決策

モバイル デバイスやエッジデバイスの一般的なユースケースに最適化されたモデルをご利用ください。

画像分類

人、動き、動物、植物、場所など、何百ものオブジェクトを識別します。

オブジェクト検出

境界ボックスで複数のオブジェクトを検出します。もちろん、イヌやネコも検出できます。

質問への回答

BERT で最新の自然言語モデルを使用して、特定の文章の内容に基づいて質問に回答します。

ニュースとお知らせ

その他の最新情報については、ブログをご覧ください。また、最新のお知らせを毎月メールボックスに直接お届けする TensorFlow ニュースレターにご登録ください。

December 18, 2020  
How to generate super resolution images using TensorFlow Lite on Android

The task of recovering a high resolution (HR) image from its low resolution counterpart is commonly referred to as Single Image Super Resolution (SISR). In this tutorial, we use a pre-trained ESRGAN model from TensorFlow Hub and generate super resolution images using...

December 2, 2020  
Build sound classification models for mobile apps with Teachable Machine and TFLite

We are excited to announce that Teachable Machine now allows you to train your own sound classification model and export it in the TensorFlow Lite (TFLite) format. Then you can integrate the TFLite model to your mobile applications or your IoT devices. This is an easy...

November 25, 2020  
Training and deploying ML models on edge devices (TF Fall 2020 Updates)

Learn how to train and deploy an ML model on an Android app in just a few lines of code with TensorFlow Lite Model Maker and Android Studio. From here you can then explore how to use various tools from Google to turn a prototype into a production app. Presented by...

Continue
November 23, 2020  
Intro to On-device Machine Learning (TF Fall 2020 Updates)

Learn about the differences between ML on a supercomputer and ML on a portable device, and the tools and technologies that Google has developed to allow you to bring your work to mobile devices without reinventing the wheel. We'll cover the basics and also special...

Continue