Se usó la API de Cloud Translation para traducir esta página.
Switch to English

Empiece a utilizar la optimización del modelo de TensorFlow

1. Elija el mejor modelo para la tarea

Dependiendo de la tarea, necesitará hacer una compensación entre la complejidad y el tamaño del modelo. Si su tarea requiere una alta precisión, es posible que necesite un modelo grande y complejo. Para tareas que requieren menos precisión, es mejor usar un modelo más pequeño porque no solo usan menos espacio en disco y memoria, sino que también son generalmente más rápidos y más eficientes energéticamente.

2. Modelos optimizados previamente

Vea si algún modelo pre-optimizado de TensorFlow Lite existente proporciona la eficiencia que requiere su aplicación.

3. Herramientas posteriores a la capacitación

Si no puede usar un modelo previamente entrenado para su aplicación, intente usar las herramientas de cuantificación posteriores al entrenamiento de TensorFlow Lite durante la conversión de TensorFlow Lite , que pueden optimizar su modelo de TensorFlow ya entrenado.

Consulte el tutorial de cuantificación posterior al entrenamiento para obtener más información.

Próximos pasos: herramientas de tiempo de formación

Si las soluciones simples anteriores no satisfacen sus necesidades, es posible que deba involucrar técnicas de optimización del tiempo de capacitación. Optimice aún más con nuestras herramientas de capacitación y profundice.