Create a random variable for Zipf.

See Zipf for more details.


Original Docstring for Distribution

Initialize a batch of Zipf distributions.

power Float like Tensor representing the power parameter. Must be strictly greater than 1.
dtype The dtype of Tensor returned by sample. Default value: tf.int32.
interpolate_nondiscrete Python bool. When False, log_prob returns -inf (and prob returns 0) for non-integer inputs. When True, log_prob evaluates the continuous function -power log(k) - log(zeta(power)) , which matches the Zipf pmf at integer arguments k (note that this function is not itself a normalized probability log-density). Default value: True.
sample_maximum_iterations Maximum number of iterations of allowable iterations in sample. When validate_args=True, samples which fail to reach convergence (subject to this cap) are masked out with self.dtype.min or nan depending on self.dtype.is_integer. Default value: 100.
validate_args Python bool, default False. When True distribution parameters are checked for validity despite possibly degrading runtime performance. When False invalid inputs may silently render incorrect outputs. Default value: False.
allow_nan_stats Python bool, default True. When True, statistics (e.g., mean, mode, variance) use the value "NaN" to indicate the result is undefined. When False, an exception is raised if one or more of the statistic's batch members are undefined. Default value: False.
name Python str name prefixed to Ops created by this class. Default value: 'Zipf'.

TypeError if power is not float like.