Help protect the Great Barrier Reef with TensorFlow on Kaggle

## Oryx 是一个基于 JAX 的概率编程和深度学习库。

```import oryx
import jax.numpy as jnp
ppl = oryx.core.ppl
tfd = oryx.distributions

# Define sampling function
def sample(key):
x = ppl.random_variable(tfd.Normal(0., 1.))(key)
return jnp.exp(x / 2.) + 2.

# Transform sampling function into a log-density function
ppl.log_prob(sample)(1.)  # ==> -0.9189
```
Oryx 的方法是公开一组会组合和集成 JAX 现有转换的函数转换。如需安装 Oryx，您可以运行以下命令：
` pip install --upgrade oryx `
[{ "type": "thumb-down", "id": "missingTheInformationINeed", "label":"没有我需要的信息" },{ "type": "thumb-down", "id": "tooComplicatedTooManySteps", "label":"太复杂/步骤太多" },{ "type": "thumb-down", "id": "outOfDate", "label":"内容需要更新" },{ "type": "thumb-down", "id": "translationIssue", "label":"翻译问题" },{ "type": "thumb-down", "id": "samplesCodeIssue", "label":"Samples / code issue" },{ "type": "thumb-down", "id": "otherDown", "label":"其他" }]
[{ "type": "thumb-up", "id": "easyToUnderstand", "label":"易于理解" },{ "type": "thumb-up", "id": "solvedMyProblem", "label":"解决了我的问题" },{ "type": "thumb-up", "id": "otherUp", "label":"其他" }]