TensorFlow সুপারিশকারী: কুইকস্টার্ট

TensorFlow.org এ দেখুন Google Colab-এ চালান GitHub-এ উৎস দেখুন নোটবুক ডাউনলোড করুন

এই টিউটোরিয়াল, আমরা একটি সহজ ম্যাট্রিক্স গুণকনির্ণয় ব্যবহার মডেল নির্মান MovieLens 100K ডেটা সেটটি TFRS সঙ্গে। আমরা একটি প্রদত্ত ব্যবহারকারীর জন্য সিনেমা সুপারিশ করতে এই মডেল ব্যবহার করতে পারেন.

TFRS আমদানি করুন

প্রথমে, TFRS ইনস্টল এবং আমদানি করুন:

pip install -q tensorflow-recommenders
pip install -q --upgrade tensorflow-datasets
from typing import Dict, Text

import numpy as np
import tensorflow as tf

import tensorflow_datasets as tfds
import tensorflow_recommenders as tfrs

ডেটা পড়ুন

# Ratings data.
ratings = tfds.load('movielens/100k-ratings', split="train")
# Features of all the available movies.
movies = tfds.load('movielens/100k-movies', split="train")

# Select the basic features.
ratings = ratings.map(lambda x: {
    "movie_title": x["movie_title"],
    "user_id": x["user_id"]
})
movies = movies.map(lambda x: x["movie_title"])
2021-10-02 12:07:32.719766: E tensorflow/stream_executor/cuda/cuda_driver.cc:271] failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected

লেয়ার এম্বেড করার জন্য ইউজার আইডি এবং মুভির শিরোনামকে পূর্ণসংখ্যা সূচকে রূপান্তর করতে শব্দভান্ডার তৈরি করুন:

user_ids_vocabulary = tf.keras.layers.StringLookup(mask_token=None)
user_ids_vocabulary.adapt(ratings.map(lambda x: x["user_id"]))

movie_titles_vocabulary = tf.keras.layers.StringLookup(mask_token=None)
movie_titles_vocabulary.adapt(movies)

একটি মডেল সংজ্ঞায়িত করুন

আমরা থেকে উত্তরাধিকার সূত্রে প্রাপ্ত একটি TFRS মডেল বর্ণনা করতে পারেন tfrs.Model এবং বাস্তবায়ন compute_loss পদ্ধতি:

class MovieLensModel(tfrs.Model):
  # We derive from a custom base class to help reduce boilerplate. Under the hood,
  # these are still plain Keras Models.

  def __init__(
      self,
      user_model: tf.keras.Model,
      movie_model: tf.keras.Model,
      task: tfrs.tasks.Retrieval):
    super().__init__()

    # Set up user and movie representations.
    self.user_model = user_model
    self.movie_model = movie_model

    # Set up a retrieval task.
    self.task = task

  def compute_loss(self, features: Dict[Text, tf.Tensor], training=False) -> tf.Tensor:
    # Define how the loss is computed.

    user_embeddings = self.user_model(features["user_id"])
    movie_embeddings = self.movie_model(features["movie_title"])

    return self.task(user_embeddings, movie_embeddings)

দুটি মডেল এবং পুনরুদ্ধারের কাজ সংজ্ঞায়িত করুন।

# Define user and movie models.
user_model = tf.keras.Sequential([
    user_ids_vocabulary,
    tf.keras.layers.Embedding(user_ids_vocabulary.vocab_size(), 64)
])
movie_model = tf.keras.Sequential([
    movie_titles_vocabulary,
    tf.keras.layers.Embedding(movie_titles_vocabulary.vocab_size(), 64)
])

# Define your objectives.
task = tfrs.tasks.Retrieval(metrics=tfrs.metrics.FactorizedTopK(
    movies.batch(128).map(movie_model)
  )
)
WARNING:tensorflow:vocab_size is deprecated, please use vocabulary_size.
WARNING:tensorflow:vocab_size is deprecated, please use vocabulary_size.
WARNING:tensorflow:vocab_size is deprecated, please use vocabulary_size.
WARNING:tensorflow:vocab_size is deprecated, please use vocabulary_size.

ফিট এবং এটি মূল্যায়ন.

মডেল তৈরি করুন, প্রশিক্ষণ দিন এবং ভবিষ্যদ্বাণী তৈরি করুন:

# Create a retrieval model.
model = MovieLensModel(user_model, movie_model, task)
model.compile(optimizer=tf.keras.optimizers.Adagrad(0.5))

# Train for 3 epochs.
model.fit(ratings.batch(4096), epochs=3)

# Use brute-force search to set up retrieval using the trained representations.
index = tfrs.layers.factorized_top_k.BruteForce(model.user_model)
index.index_from_dataset(
    movies.batch(100).map(lambda title: (title, model.movie_model(title))))

# Get some recommendations.
_, titles = index(np.array(["42"]))
print(f"Top 3 recommendations for user 42: {titles[0, :3]}")
Epoch 1/3
25/25 [==============================] - 6s 194ms/step - factorized_top_k/top_1_categorical_accuracy: 3.0000e-05 - factorized_top_k/top_5_categorical_accuracy: 0.0016 - factorized_top_k/top_10_categorical_accuracy: 0.0052 - factorized_top_k/top_50_categorical_accuracy: 0.0442 - factorized_top_k/top_100_categorical_accuracy: 0.1010 - loss: 33092.9163 - regularization_loss: 0.0000e+00 - total_loss: 33092.9163
Epoch 2/3
25/25 [==============================] - 5s 194ms/step - factorized_top_k/top_1_categorical_accuracy: 1.7000e-04 - factorized_top_k/top_5_categorical_accuracy: 0.0052 - factorized_top_k/top_10_categorical_accuracy: 0.0148 - factorized_top_k/top_50_categorical_accuracy: 0.1054 - factorized_top_k/top_100_categorical_accuracy: 0.2114 - loss: 31008.8447 - regularization_loss: 0.0000e+00 - total_loss: 31008.8447
Epoch 3/3
25/25 [==============================] - 5s 193ms/step - factorized_top_k/top_1_categorical_accuracy: 3.4000e-04 - factorized_top_k/top_5_categorical_accuracy: 0.0086 - factorized_top_k/top_10_categorical_accuracy: 0.0222 - factorized_top_k/top_50_categorical_accuracy: 0.1438 - factorized_top_k/top_100_categorical_accuracy: 0.2694 - loss: 30417.8776 - regularization_loss: 0.0000e+00 - total_loss: 30417.8776
Top 3 recommendations for user 42: [b'Rent-a-Kid (1995)' b'Just Cause (1995)'
 b'Land Before Time III: The Time of the Great Giving (1995) (V)']