Aide à protéger la Grande barrière de corail avec tensorflow sur Kaggle Rejoignez Défi

Exemple d'indicateurs d'équité FaceSSD Colab

Voir sur TensorFlow.org Exécuter dans Google Colab Voir sur GitHub Télécharger le cahier

Aperçu

Dans cette activité, vous allez utiliser les indicateurs d' équité pour explorer les prévisions FaceSSD sur les visages marqués dans l'ensemble de données sauvage . Les indicateurs d' équité est une suite d'outils intégrés au - dessus de tensorflow modèle d' analyse qui permettent une évaluation régulière des mesures d'équité dans les pipelines de produits.

À propos de l'ensemble de données

Dans cet exercice, vous travaillerez avec le jeu de données de prédiction FaceSSD, environ 200 000 prédictions d'images différentes et vérités de terrain générées par l'API FaceSSD.

À propos des outils

Tensorflow modèle d' analyse est une bibliothèque pour évaluer à la fois tensorflow et modèles d'apprentissage machine non tensorflow. Il permet aux utilisateurs d'évaluer leurs modèles sur de grandes quantités de données de manière distribuée, de calculer des graphiques et d'autres métriques sur différentes tranches de données et de les visualiser dans des cahiers.

Tensorflow la validation des données est un outil que vous pouvez utiliser pour analyser vos données. Vous pouvez l'utiliser pour trouver des problèmes potentiels dans vos données, tels que des valeurs manquantes et des déséquilibres de données, qui peuvent entraîner des disparités d'équité.

Avec les indicateurs d' équité , les utilisateurs seront en mesure de:

  • Évaluer les performances du modèle, réparties sur des groupes d'utilisateurs définis
  • Ayez confiance en vos résultats avec des intervalles de confiance et des évaluations à plusieurs seuils

Importation

Exécutez le code suivant pour installer la bibliothèque fairness_indicators. Ce package contient les outils que nous utiliserons dans cet exercice. Redémarrer Runtime peut être demandé mais n'est pas nécessaire.

pip install -q -U pip==20.2
pip install fairness-indicators
import os
import tempfile
import apache_beam as beam
import numpy as np
import pandas as pd
from datetime import datetime

import tensorflow_hub as hub
import tensorflow as tf
import tensorflow_model_analysis as tfma
import tensorflow_data_validation as tfdv
from tensorflow_model_analysis.addons.fairness.post_export_metrics import fairness_indicators
from tensorflow_model_analysis.addons.fairness.view import widget_view
from tensorflow_model_analysis.model_agnostic_eval import model_agnostic_predict as agnostic_predict
from tensorflow_model_analysis.model_agnostic_eval import model_agnostic_evaluate_graph
from tensorflow_model_analysis.model_agnostic_eval import model_agnostic_extractor

from witwidget.notebook.visualization import WitConfigBuilder
from witwidget.notebook.visualization import WitWidget

Télécharger et comprendre les données

Faces marquées dans le sauvage est un ensemble de données de référence publique pour la vérification du visage, aussi connu sous le nom correspondant de la paire. LFW contient plus de 13 000 images de visages collectées sur le Web.

Nous avons exécuté des prédictions FaceSSD sur cet ensemble de données pour prédire si un visage est présent dans une image donnée. Dans ce Colab, nous découperons les données en fonction du sexe pour observer s'il existe des différences significatives entre les performances du modèle pour les différents groupes de sexe.

S'il y a plus d'un visage dans une image, le sexe est étiqueté comme « MANQUANT ».

Nous avons hébergé l'ensemble de données sur Google Cloud Platform pour plus de commodité. Exécutez le code suivant pour télécharger les données à partir de GCP, le téléchargement et l'analyse des données prendront environ une minute.

data_location = tf.keras.utils.get_file('lfw_dataset.tf', 'https://storage.googleapis.com/facessd_dataset/lfw_dataset.tfrecord')

stats = tfdv.generate_statistics_from_tfrecord(data_location=data_location)
tfdv.visualize_statistics(stats)
Downloading data from https://storage.googleapis.com/facessd_dataset/lfw_dataset.tfrecord
200835072/200828483 [==============================] - 1s 0us/step
WARNING:apache_beam.runners.interactive.interactive_environment:Dependencies required for Interactive Beam PCollection visualization are not available, please use: `pip install apache-beam[interactive]` to install necessary dependencies to enable all data visualization features.
WARNING:apache_beam.io.tfrecordio:Couldn't find python-snappy so the implementation of _TFRecordUtil._masked_crc32c is not as fast as it could be.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow_data_validation/utils/stats_util.py:247: tf_record_iterator (from tensorflow.python.lib.io.tf_record) is deprecated and will be removed in a future version.
Instructions for updating:
Use eager execution and: 
`tf.data.TFRecordDataset(path)`
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow_data_validation/utils/stats_util.py:247: tf_record_iterator (from tensorflow.python.lib.io.tf_record) is deprecated and will be removed in a future version.
Instructions for updating:
Use eager execution and: 
`tf.data.TFRecordDataset(path)`

Définition de constantes

BASE_DIR = tempfile.gettempdir()

tfma_eval_result_path = os.path.join(BASE_DIR, 'tfma_eval_result')

compute_confidence_intervals = True

slice_key = 'object/groundtruth/Gender'
label_key = 'object/groundtruth/face'
prediction_key = 'object/prediction/face'

feature_map = {
    slice_key:
        tf.io.FixedLenFeature([], tf.string, default_value=['none']),
    label_key:
        tf.io.FixedLenFeature([], tf.float32, default_value=[0.0]),
    prediction_key:
        tf.io.FixedLenFeature([], tf.float32, default_value=[0.0]),
}

Configuration indépendante du modèle pour TFMA

model_agnostic_config = agnostic_predict.ModelAgnosticConfig(
    label_keys=[label_key],
    prediction_keys=[prediction_key],
    feature_spec=feature_map)

model_agnostic_extractors = [
    model_agnostic_extractor.ModelAgnosticExtractor(
        model_agnostic_config=model_agnostic_config, desired_batch_size=3),
    tfma.extractors.slice_key_extractor.SliceKeyExtractor(
          [tfma.slicer.SingleSliceSpec(),
           tfma.slicer.SingleSliceSpec(columns=[slice_key])])
]

Rappels d'équité et calcul des métriques d'équité

# Helper class for counting examples in beam PCollection
class CountExamples(beam.CombineFn):
    def __init__(self, message):
      self.message = message

    def create_accumulator(self):
      return 0

    def add_input(self, current_sum, element):
      return current_sum + 1

    def merge_accumulators(self, accumulators): 
      return sum(accumulators)

    def extract_output(self, final_sum):
      if final_sum:
        print("%s: %d"%(self.message, final_sum))
metrics_callbacks = [
  tfma.post_export_metrics.fairness_indicators(
      thresholds=[0.1, 0.3, 0.5, 0.7, 0.9],
      labels_key=label_key,
      target_prediction_keys=[prediction_key]),
  tfma.post_export_metrics.auc(
      curve='PR',
      labels_key=label_key,
      target_prediction_keys=[prediction_key]),
]

eval_shared_model = tfma.types.EvalSharedModel(
    add_metrics_callbacks=metrics_callbacks,
    construct_fn=model_agnostic_evaluate_graph.make_construct_fn(
        add_metrics_callbacks=metrics_callbacks,
        config=model_agnostic_config))

with beam.Pipeline() as pipeline:
  # Read data.
  data = (
      pipeline
      | 'ReadData' >> beam.io.ReadFromTFRecord(data_location))

  # Count all examples.
  data_count = (
      data | 'Count number of examples' >> beam.CombineGlobally(
          CountExamples('Before filtering "Gender:MISSING"')))

  # If there are more than one face in image, the gender feature is 'MISSING'
  # and we are filtering that image out.
  def filter_missing_gender(element):
    example = tf.train.Example.FromString(element)
    if example.features.feature[slice_key].bytes_list.value[0] != b'MISSING':
      yield element

  filtered_data = (
      data
      | 'Filter Missing Gender' >> beam.ParDo(filter_missing_gender))

  # Count after filtering "Gender:MISSING".
  filtered_data_count = (
      filtered_data | 'Count number of examples after filtering'
      >> beam.CombineGlobally(
          CountExamples('After filtering "Gender:MISSING"')))

  # Because LFW data set has always faces by default, we are adding
  # labels as 1.0 for all images.
  def add_face_groundtruth(element):
    example = tf.train.Example.FromString(element)
    example.features.feature[label_key].float_list.value[:] = [1.0]
    yield example.SerializeToString()

  final_data = (
      filtered_data
      | 'Add Face Groundtruth' >> beam.ParDo(add_face_groundtruth))

  # Run TFMA.
  _ = (
      final_data
      | 'ExtractEvaluateAndWriteResults' >>
       tfma.ExtractEvaluateAndWriteResults(
                 eval_shared_model=eval_shared_model,
                 compute_confidence_intervals=compute_confidence_intervals,
                 output_path=tfma_eval_result_path,
                 extractors=model_agnostic_extractors))

eval_result = tfma.load_eval_result(output_path=tfma_eval_result_path)
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow_model_analysis/post_export_metrics/post_export_metrics.py:178: auc (from tensorflow.python.ops.metrics_impl) is deprecated and will be removed in a future version.
Instructions for updating:
The value of AUC returned by this may race with the update so this is deprecated. Please use tf.keras.metrics.AUC instead.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow_model_analysis/post_export_metrics/post_export_metrics.py:178: auc (from tensorflow.python.ops.metrics_impl) is deprecated and will be removed in a future version.
Instructions for updating:
The value of AUC returned by this may race with the update so this is deprecated. Please use tf.keras.metrics.AUC instead.
Before filtering "Gender:MISSING": 13836
After filtering "Gender:MISSING": 11544
WARNING:apache_beam.io.filebasedsink:Deleting 1 existing files in target path matching: 
WARNING:apache_beam.io.filebasedsink:Deleting 1 existing files in target path matching: 
WARNING:apache_beam.io.filebasedsink:Deleting 1 existing files in target path matching:

Indicateurs d'équité de rendu

Affichez le widget Indicateurs d'équité avec les résultats d'évaluation exportés.

Ci-dessous, vous verrez des graphiques à barres affichant les performances de chaque tranche des données sur les métriques sélectionnées. Vous pouvez ajuster la tranche de comparaison de la ligne de base ainsi que le ou les seuils affichés à l'aide des menus déroulants en haut de la visualisation.

Une mesure pertinente pour ce cas d'utilisation est le taux de vrais positifs, également appelé rappel. Utilisez le sélecteur sur le côté gauche pour choisir le graphique pour true_positive_rate. Ces valeurs métriques correspondent aux valeurs affichées sur la carte modèle .

Pour certaines photos, le sexe est étiqueté comme jeune au lieu de masculin ou féminin, si la personne sur la photo est trop jeune pour être annotée avec précision.

widget_view.render_fairness_indicator(eval_result=eval_result,
                                      slicing_column=slice_key)
FairnessIndicatorViewer(slicingMetrics=[{'sliceValue': 'Overall', 'slice': 'Overall', 'metrics': {'post_export…