@frozen
public struct DepthwiseConv2D<Scalar> : Layer where Scalar : TensorFlowFloatingPoint
A 2-D depthwise convolution layer.
This layer creates seperable convolution filters that are convolved with the layer input to produce a tensor of outputs.
-
The 4-D convolution kernel.
Declaration
public var filter: Tensor<Scalar>
-
The bias vector.
Declaration
public var bias: Tensor<Scalar>
-
The element-wise activation function.
Declaration
@noDerivative public let activation: Activation
-
The strides of the sliding window for spatial dimensions.
Declaration
@noDerivative public let strides: (Int, Int)
-
The padding algorithm for convolution.
Declaration
@noDerivative public let padding: Padding
-
Creates a
DepthwiseConv2D
layer with the specified filter, bias, activation function, strides, and padding.Declaration
public init( filter: Tensor<Scalar>, bias: Tensor<Scalar>? = nil, activation: @escaping Activation = identity, strides: (Int, Int) = (1, 1), padding: Padding = .valid )
Parameters
filter
The 4-D convolution kernel.
bias
The bias vector.
activation
The element-wise activation function.
strides
The strides of the sliding window for spatial dimensions.
padding
The padding algorithm for convolution.
-
Returns the output obtained from applying the layer to the given input.
Parameters
input
The input to the layer of shape, [batch count, input height, input width, input channel count]
Return Value
The output of shape, [batch count, output height, output width, input channel count * channel multiplier]
-
Creates a
DepthwiseConv2D
layer with the specified filter shape, strides, padding, and element-wise activation function.Declaration
public init( filterShape: (Int, Int, Int, Int), strides: (Int, Int) = (1, 1), padding: Padding = .valid, activation: @escaping Activation = identity, useBias: Bool = true, filterInitializer: ParameterInitializer<Scalar> = glorotUniform(), biasInitializer: ParameterInitializer<Scalar> = zeros() )
Parameters
filterShape
The shape of the 4-D convolution kernel with form, [filter width, filter height, input channel count, channel multiplier].
strides
The strides of the sliding window for spatial/spatio-temporal dimensions.
padding
The padding algorithm for convolution.
activation
The element-wise activation function.
filterInitializer
Initializer to use for the filter parameters.
biasInitializer
Initializer to use for the bias parameters.