A layer that sequentially composes two or more other layers.
Examples:
- Build a simple 2-layer perceptron model for MNIST:
let inputSize = 28 * 28
let hiddenSize = 300
var classifier = Sequential {
Dense<Float>(inputSize: inputSize, outputSize: hiddenSize, activation: relu)
Dense<Float>(inputSize: hiddenSize, outputSize: 3, activation: identity)
}
- Build an autoencoder for MNIST:
var autoencoder = Sequential {
// The encoder.
Dense<Float>(inputSize: 28 * 28, outputSize: 128, activation: relu)
Dense<Float>(inputSize: 128, outputSize: 64, activation: relu)
Dense<Float>(inputSize: 64, outputSize: 12, activation: relu)
Dense<Float>(inputSize: 12, outputSize: 3, activation: relu)
// The decoder.
Dense<Float>(inputSize: 3, outputSize: 12, activation: relu)
Dense<Float>(inputSize: 12, outputSize: 64, activation: relu)
Dense<Float>(inputSize: 64, outputSize: 128, activation: relu)
Dense<Float>(inputSize: 128, outputSize: imageHeight * imageWidth, activation: tanh)
}
-
Declaration
public var layer1: Layer1
-
Declaration
public var layer2: Layer2
-
Declaration
public init(_ layer1: Layer1, _ layer2: Layer2)
-
Declaration
@differentiable(wrt: self) public func callAsFunction(_ input: Layer1.Input) -> Layer2.Output
-
Declaration
public init(@LayerBuilder layers: () -> `Self`)
-
Declaration
@differentiable public func callAsFunction(_ input: Layer1.Input) -> Layer2.Output