@frozen
public struct TransposedConv1D<Scalar> : Layer where Scalar : TensorFlowFloatingPoint
A 1-D transposed convolution layer (e.g. temporal transposed convolution over images).
This layer creates a convolution filter that is transpose-convolved with the layer input to produce a tensor of outputs.
-
The 1-D convolution kernel.
Declaration
public var filter: Tensor<Scalar>
-
The bias vector.
Declaration
public var bias: Tensor<Scalar>
-
The element-wise activation function.
Declaration
@noDerivative public let activation: Activation
-
The strides of the sliding window for spatial dimensions.
Declaration
@noDerivative public let stride: Int
-
The padding algorithm for convolution.
Declaration
@noDerivative public let padding: Padding
-
The paddingIndex property allows us to handle computation based on padding.
Declaration
@noDerivative public let paddingIndex: Int
-
Creates a
TransposedConv1D
layer with the specified filter, bias, activation function, strides, and padding.Declaration
public init( filter: Tensor<Scalar>, bias: Tensor<Scalar>? = nil, activation: @escaping Activation = identity, stride: Int = 1, padding: Padding = .valid )
Parameters
filter
The 3-D convolution kernel.
bias
The bias vector.
activation
The element-wise activation function.
strides
The strides of the sliding window for spatial dimensions.
padding
The padding algorithm for convolution.
-
Creates a
TransposedConv1D
layer with the specified filter shape, strides, padding, and element-wise activation function. The filter tensor is initialized using Glorot uniform initialization with the specified generator. The bias vector is initialized with zeros.Declaration
public init( filterShape: (Int, Int, Int), stride: Int = 1, padding: Padding = .valid, activation: @escaping Activation = identity, useBias: Bool = true, filterInitializer: ParameterInitializer<Scalar> = glorotUniform(), biasInitializer: ParameterInitializer<Scalar> = zeros() )
Parameters
filterShape
The shape of the 3-D convolution kernel.
strides
The strides of the sliding window for spatial dimensions.
padding
The padding algorithm for convolution.
activation
The element-wise activation function.
generator
The random number generator for initialization.