Esta página foi traduzida pela API Cloud Translation.
Switch to English

Interoperabilidade Python

Ver em TensorFlow.org Executar no Google Colab Ver fonte no GitHub

O Swift For TensorFlow suporta a interoperabilidade do Python.

Você pode importar módulos Python do Swift, chamar funções Python e converter valores entre Swift e Python.

 // comment so that Colab does not interpret `#if ...` as a comment
#if canImport(PythonKit)
    import PythonKit
#else
    import Python
#endif
print(Python.version)
 
3.6.9 (default, Apr 18 2020, 01:56:04) 
[GCC 8.4.0]

Definindo a versão do Python

Por padrão, quando você import Python , o Swift procura nos caminhos da biblioteca do sistema a versão mais recente do Python instalada. Para usar uma instalação específica do Python, configure a variável de ambiente PYTHON_LIBRARY para a biblioteca compartilhada libpython fornecida pela instalação. Por exemplo:

export PYTHON_LIBRARY="~/anaconda3/lib/libpython3.7m.so"

O nome do arquivo exato será diferente nos ambientes e plataformas Python.

Como alternativa, você pode definir a variável de ambiente PYTHON_VERSION , que instrui o Swift a procurar nos caminhos da biblioteca do sistema por uma versão correspondente do Python. Observe que PYTHON_LIBRARY tem precedência sobre PYTHON_VERSION .

No código, você também pode chamar a função PythonLibrary.useVersion , que é equivalente à configuração PYTHON_VERSION .

 // PythonLibrary.useVersion(2)
// PythonLibrary.useVersion(3, 7)
 

Nota: você deve executar o PythonLibrary.useVersion logo após a import Python , antes de chamar qualquer código Python. Ele não pode ser usado para alternar dinamicamente as versões do Python.

Defina PYTHON_LOADER_LOGGING=1 para ver a saída de depuração para o carregamento da biblioteca Python .

Fundamentos

No Swift, PythonObject representa um objeto do Python. Todas as APIs Python usam e retornam instâncias PythonObject .

Tipos básicos no Swift (como números e matrizes) são conversíveis em PythonObject . Em alguns casos (para literais e funções que PythonConvertible argumentos PythonConvertible ), a conversão ocorre implicitamente. Para converter explicitamente um valor Swift para PythonObject , use o inicializador PythonObject .

PythonObject define muitas operações padrão, incluindo operações numéricas, indexação e iteração.

 // Convert standard Swift types to Python.
let pythonInt: PythonObject = 1
let pythonFloat: PythonObject = 3.0
let pythonString: PythonObject = "Hello Python!"
let pythonRange: PythonObject = PythonObject(5..<10)
let pythonArray: PythonObject = [1, 2, 3, 4]
let pythonDict: PythonObject = ["foo": [0], "bar": [1, 2, 3]]

// Perform standard operations on Python objects.
print(pythonInt + pythonFloat)
print(pythonString[0..<6])
print(pythonRange)
print(pythonArray[2])
print(pythonDict["bar"])
 
4.0
Hello 
slice(5, 10, None)
3
[1, 2, 3]

 // Convert Python objects back to Swift.
let int = Int(pythonInt)!
let float = Float(pythonFloat)!
let string = String(pythonString)!
let range = Range<Int>(pythonRange)!
let array: [Int] = Array(pythonArray)!
let dict: [String: [Int]] = Dictionary(pythonDict)!

// Perform standard operations.
// Outputs are the same as Python!
print(Float(int) + float)
print(string.prefix(6))
print(range)
print(array[2])
print(dict["bar"]!)
 
4.0
Hello 
5..<10
3
[1, 2, 3]

PythonObject define conformidade com muitos protocolos Swift padrão:

  • Equatable
  • Comparable
  • Hashable
  • SignedNumeric
  • Strideable
  • MutableCollection
  • Todos os protocolos ExpressibleBy_Literal

Observe que essas conformidades não são seguras para o tipo: ocorrerão falhas se você tentar usar a funcionalidade de protocolo de uma instância incompatível do PythonObject .

 let one: PythonObject = 1
print(one == one)
print(one < one)
print(one + one)

let array: PythonObject = [1, 2, 3]
for (i, x) in array.enumerated() {
  print(i, x)
}
 
true
false
2
0 1
1 2
2 3

Para converter tuplas de Python para Swift, você deve conhecer estaticamente a aridade da tupla.

Chame um dos seguintes métodos de instância:

  • PythonObject.tuple2
  • PythonObject.tuple3
  • PythonObject.tuple4
 let pythonTuple = Python.tuple([1, 2, 3])
print(pythonTuple, Python.len(pythonTuple))

// Convert to Swift.
let tuple = pythonTuple.tuple3
print(tuple)
 
(1, 2, 3) 3
(1, 2, 3)

Construções Python

Acesse os componentes internos do Python através da interface global do Python .

 // `Python.builtins` is a dictionary of all Python builtins.
_ = Python.builtins

// Try some Python builtins.
print(Python.type(1))
print(Python.len([1, 2, 3]))
print(Python.sum([1, 2, 3]))
 
<class 'int'>
3
6

Importando módulos Python

Use Python.import para importar um módulo Python. Funciona como a palavra-chave import no Python .

 let np = Python.import("numpy")
print(np)
let zeros = np.ones([2, 3])
print(zeros)
 
<module 'numpy' from '/usr/local/lib/python3.6/dist-packages/numpy/__init__.py'>
[[1. 1. 1.]
 [1. 1. 1.]]

Use a função de lançamento Python.attemptImport para executar uma importação segura.

 let maybeModule = try? Python.attemptImport("nonexistent_module")
print(maybeModule)
 
nil

Conversão com numpy.ndarray

Os seguintes tipos Swift podem ser convertidos para e de numpy.ndarray :

  • Array<Element>
  • ShapedArray<Scalar>
  • Tensor<Scalar>

A conversão será bem-sucedida apenas se o dtype de numpy.ndarray for compatível com o tipo de parâmetro genérico Element ou Scalar .

Para Array , a conversão de numpy é bem-sucedida apenas se o numpy.ndarray for 1-D.

 import TensorFlow

let numpyArray = np.ones([4], dtype: np.float32)
print("Swift type:", type(of: numpyArray))
print("Python type:", Python.type(numpyArray))
print(numpyArray.shape)
 
Swift type: PythonObject
Python type: <class 'numpy.ndarray'>
(4,)

 // Examples of converting `numpy.ndarray` to Swift types.
let array: [Float] = Array(numpy: numpyArray)!
let shapedArray = ShapedArray<Float>(numpy: numpyArray)!
let tensor = Tensor<Float>(numpy: numpyArray)!

// Examples of converting Swift types to `numpy.ndarray`.
print(array.makeNumpyArray())
print(shapedArray.makeNumpyArray())
print(tensor.makeNumpyArray())

// Examples with different dtypes.
let doubleArray: [Double] = Array(numpy: np.ones([3], dtype: np.float))!
let intTensor = Tensor<Int32>(numpy: np.ones([2, 3], dtype: np.int32))!
 
[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]

Exibindo imagens

Você pode exibir imagens em linha usando o matplotlib , assim como nos notebooks Python.

 // This cell is here to display plots inside a Jupyter Notebook.
// Do not copy it into another environment.
%include "EnableIPythonDisplay.swift"
IPythonDisplay.shell.enable_matplotlib("inline")
 
('inline', 'module://ipykernel.pylab.backend_inline')

 let np = Python.import("numpy")
let plt = Python.import("matplotlib.pyplot")

let time = np.arange(0, 10, 0.01)
let amplitude = np.exp(-0.1 * time)
let position = amplitude * np.sin(3 * time)

plt.figure(figsize: [15, 10])

plt.plot(time, position)
plt.plot(time, amplitude)
plt.plot(time, -amplitude)

plt.xlabel("Time (s)")
plt.ylabel("Position (m)")
plt.title("Oscillations")

plt.show()
 

png

None