Strings Unicode

Ver no TensorFlow.org Executar no Google Colab Ver fonte no GitHub Baixar caderno

Introdução

Os modelos de PNL geralmente lidam com diferentes idiomas com diferentes conjuntos de caracteres. Unicode é um sistema de codificação padrão que é usada para representar caracteres de quase todos os idiomas. Caráter cada Unicode é codificados usando um número inteiro único ponto de código entre 0 e 0x10FFFF . String Um Unicode é uma seqüência de zero ou mais pontos de código.

Este tutorial mostra como representar strings Unicode no TensorFlow e manipulá-las usando equivalentes Unicode de operações de string padrão. Ele separa strings Unicode em tokens com base na detecção de script.

import tensorflow as tf
import numpy as np

O tf.string tipo de dados

O básico TensorFlow tf.string dtype permite que você construa tensores de strings de bytes. Cadeias de caracteres Unicode são UTF-8 codificado por padrão.

tf.constant(u"Thanks 😊")
<tf.Tensor: shape=(), dtype=string, numpy=b'Thanks \xf0\x9f\x98\x8a'>

A tf.string tensor trata byte strings como unidades atômicas. Isso permite que ele armazene cadeias de bytes de comprimentos variados. O comprimento da string não está incluído nas dimensões do tensor.

tf.constant([u"You're", u"welcome!"]).shape
TensorShape([2])

Se você usar Python para cordas construto, nota que strings literais são codificados em Unicode por padrão.

Representando Unicode

Há duas maneiras padrão de representar uma string Unicode no TensorFlow:

  • string escalar - em que a sequência de pontos de código é codificado usando uma conhecida codificação de caracteres .
  • int32 vetor - em que cada posição contém um único ponto de código.

Por exemplo, os seguintes três valores todos representam a seqüência de caracteres Unicode "语言处理" (que significa "processamento de linguagem" em chinês):

# Unicode string, represented as a UTF-8 encoded string scalar.
text_utf8 = tf.constant(u"语言处理")
text_utf8
<tf.Tensor: shape=(), dtype=string, numpy=b'\xe8\xaf\xad\xe8\xa8\x80\xe5\xa4\x84\xe7\x90\x86'>
# Unicode string, represented as a UTF-16-BE encoded string scalar.
text_utf16be = tf.constant(u"语言处理".encode("UTF-16-BE"))
text_utf16be
<tf.Tensor: shape=(), dtype=string, numpy=b'\x8b\xed\x8a\x00Y\x04t\x06'>
# Unicode string, represented as a vector of Unicode code points.
text_chars = tf.constant([ord(char) for char in u"语言处理"])
text_chars
<tf.Tensor: shape=(4,), dtype=int32, numpy=array([35821, 35328, 22788, 29702], dtype=int32)>

Convertendo entre representações

O TensorFlow fornece operações para converter entre essas diferentes representações:

tf.strings.unicode_decode(text_utf8,
                          input_encoding='UTF-8')
<tf.Tensor: shape=(4,), dtype=int32, numpy=array([35821, 35328, 22788, 29702], dtype=int32)>
tf.strings.unicode_encode(text_chars,
                          output_encoding='UTF-8')
<tf.Tensor: shape=(), dtype=string, numpy=b'\xe8\xaf\xad\xe8\xa8\x80\xe5\xa4\x84\xe7\x90\x86'>
tf.strings.unicode_transcode(text_utf8,
                             input_encoding='UTF8',
                             output_encoding='UTF-16-BE')
<tf.Tensor: shape=(), dtype=string, numpy=b'\x8b\xed\x8a\x00Y\x04t\x06'>

Dimensões do lote

Ao decodificar várias strings, o número de caracteres em cada string pode não ser igual. O resultado é um retorno tf.RaggedTensor , onde o comprimento dimensão mais interna varia de acordo com o número de caracteres em cada cadeia.

# A batch of Unicode strings, each represented as a UTF8-encoded string.
batch_utf8 = [s.encode('UTF-8') for s in
              [u'hÃllo', u'What is the weather tomorrow', u'Göödnight', u'😊']]
batch_chars_ragged = tf.strings.unicode_decode(batch_utf8,
                                               input_encoding='UTF-8')
for sentence_chars in batch_chars_ragged.to_list():
  print(sentence_chars)
[104, 195, 108, 108, 111]
[87, 104, 97, 116, 32, 105, 115, 32, 116, 104, 101, 32, 119, 101, 97, 116, 104, 101, 114, 32, 116, 111, 109, 111, 114, 114, 111, 119]
[71, 246, 246, 100, 110, 105, 103, 104, 116]
[128522]

Você pode usar este tf.RaggedTensor diretamente, ou convertê-lo para uma densa tf.Tensor com estofamento ou um tf.SparseTensor usando os métodos tf.RaggedTensor.to_tensor e tf.RaggedTensor.to_sparse .

batch_chars_padded = batch_chars_ragged.to_tensor(default_value=-1)
print(batch_chars_padded.numpy())
[[   104    195    108    108    111     -1     -1     -1     -1     -1
      -1     -1     -1     -1     -1     -1     -1     -1     -1     -1
      -1     -1     -1     -1     -1     -1     -1     -1]
 [    87    104     97    116     32    105    115     32    116    104
     101     32    119    101     97    116    104    101    114     32
     116    111    109    111    114    114    111    119]
 [    71    246    246    100    110    105    103    104    116     -1
      -1     -1     -1     -1     -1     -1     -1     -1     -1     -1
      -1     -1     -1     -1     -1     -1     -1     -1]
 [128522     -1     -1     -1     -1     -1     -1     -1     -1     -1
      -1     -1     -1     -1     -1     -1     -1     -1     -1     -1
      -1     -1     -1     -1     -1     -1     -1     -1]]
batch_chars_sparse = batch_chars_ragged.to_sparse()

nrows, ncols = batch_chars_sparse.dense_shape.numpy()
elements = [['_' for i in range(ncols)] for j in range(nrows)]
for (row, col), value in zip(batch_chars_sparse.indices.numpy(), batch_chars_sparse.values.numpy()):
  elements[row][col] = str(value)
# max_width = max(len(value) for row in elements for value in row)
value_lengths = []
for row in elements:
  for value in row:
    value_lengths.append(len(value))
max_width = max(value_lengths)
print('[%s]' % '\n '.join(
    '[%s]' % ', '.join(value.rjust(max_width) for value in row)
    for row in elements))
[[   104,    195,    108,    108,    111,      _,      _,      _,      _,      _,      _,      _,      _,      _,      _,      _,      _,      _,      _,      _,      _,      _,      _,      _,      _,      _,      _,      _]
 [    87,    104,     97,    116,     32,    105,    115,     32,    116,    104,    101,     32,    119,    101,     97,    116,    104,    101,    114,     32,    116,    111,    109,    111,    114,    114,    111,    119]
 [    71,    246,    246,    100,    110,    105,    103,    104,    116,      _,      _,      _,      _,      _,      _,      _,      _,      _,      _,      _,      _,      _,      _,      _,      _,      _,      _,      _]
 [128522,      _,      _,      _,      _,      _,      _,      _,      _,      _,      _,      _,      _,      _,      _,      _,      _,      _,      _,      _,      _,      _,      _,      _,      _,      _,      _,      _]]

Quando codificando várias sequências com os mesmos comprimentos, usar um tf.Tensor como entrada.

tf.strings.unicode_encode([[99, 97, 116], [100, 111, 103], [99, 111, 119]],
                          output_encoding='UTF-8')
<tf.Tensor: shape=(3,), dtype=string, numpy=array([b'cat', b'dog', b'cow'], dtype=object)>

Quando várias cadeias codifica com comprimento variável, utilizar um tf.RaggedTensor como entrada.

tf.strings.unicode_encode(batch_chars_ragged, output_encoding='UTF-8')
<tf.Tensor: shape=(4,), dtype=string, numpy=
array([b'h\xc3\x83llo', b'What is the weather tomorrow',
       b'G\xc3\xb6\xc3\xb6dnight', b'\xf0\x9f\x98\x8a'], dtype=object)>

Se você tem um tensor com várias seqüências em formato acolchoado ou esparsa, convertê-lo primeiro em um tf.RaggedTensor antes de chamar tf.strings.unicode_encode .

tf.strings.unicode_encode(
    tf.RaggedTensor.from_sparse(batch_chars_sparse),
    output_encoding='UTF-8')
<tf.Tensor: shape=(4,), dtype=string, numpy=
array([b'h\xc3\x83llo', b'What is the weather tomorrow',
       b'G\xc3\xb6\xc3\xb6dnight', b'\xf0\x9f\x98\x8a'], dtype=object)>
tf.strings.unicode_encode(
    tf.RaggedTensor.from_tensor(batch_chars_padded, padding=-1),
    output_encoding='UTF-8')
<tf.Tensor: shape=(4,), dtype=string, numpy=
array([b'h\xc3\x83llo', b'What is the weather tomorrow',
       b'G\xc3\xb6\xc3\xb6dnight', b'\xf0\x9f\x98\x8a'], dtype=object)>

Operações Unicode

Comprimento do caractere

Utilizar a unit parâmetro do tf.strings.length op para indicar como comprimentos de caracteres deve ser calculado. unit padrão é "BYTE" , mas pode ser configurado para outros valores, tais como "UTF8_CHAR" ou "UTF16_CHAR" , para determinar o número de pontos de código Unicode em cada cadeia codificada.

# Note that the final character takes up 4 bytes in UTF8.
thanks = u'Thanks 😊'.encode('UTF-8')
num_bytes = tf.strings.length(thanks).numpy()
num_chars = tf.strings.length(thanks, unit='UTF8_CHAR').numpy()
print('{} bytes; {} UTF-8 characters'.format(num_bytes, num_chars))
11 bytes; 8 UTF-8 characters

Substrings de caracteres

O tf.strings.substr op aceita a unit parâmetro, e usa-lo para determinar que tipo de offsets os pos e len paremeters conter.

# Here, unit='BYTE' (default). Returns a single byte with len=1
tf.strings.substr(thanks, pos=7, len=1).numpy()
b'\xf0'
# Specifying unit='UTF8_CHAR', returns a single 4 byte character in this case
print(tf.strings.substr(thanks, pos=7, len=1, unit='UTF8_CHAR').numpy())
b'\xf0\x9f\x98\x8a'

Dividir strings Unicode

O tf.strings.unicode_split operação divide cordas Unicode em subsequências de caracteres individuais.

tf.strings.unicode_split(thanks, 'UTF-8').numpy()
array([b'T', b'h', b'a', b'n', b'k', b's', b' ', b'\xf0\x9f\x98\x8a'],
      dtype=object)

Deslocamentos de bytes para caracteres

Para alinhar o tensor personagem gerado por tf.strings.unicode_decode com a string original, é útil saber o deslocamento para onde cada personagem começa. O método tf.strings.unicode_decode_with_offsets é semelhante ao unicode_decode , excepto que ele retorna um segundo tensores contendo a compensação inicial de cada caracter.

codepoints, offsets = tf.strings.unicode_decode_with_offsets(u'🎈🎉🎊', 'UTF-8')

for (codepoint, offset) in zip(codepoints.numpy(), offsets.numpy()):
  print('At byte offset {}: codepoint {}'.format(offset, codepoint))
At byte offset 0: codepoint 127880
At byte offset 4: codepoint 127881
At byte offset 8: codepoint 127882

Scripts Unicode

Cada ponto de código Unicode pertence a um único conjunto de codepoints conhecidos como um roteiro . O script de um caractere é útil para determinar em qual idioma o caractere pode estar. Por exemplo, saber que 'Б' está em alfabeto cirílico indica que o texto moderno que contém esse caractere é provavelmente de um idioma eslavo, como russo ou ucraniano.

TensorFlow fornece a tf.strings.unicode_script operação para determinar qual script uma dada usos codepoint. Os códigos de script são int32 valores correspondentes para International Components for Unicode (UTI) UScriptCode valores.

uscript = tf.strings.unicode_script([33464, 1041])  # ['芸', 'Б']

print(uscript.numpy())  # [17, 8] == [USCRIPT_HAN, USCRIPT_CYRILLIC]
[17  8]

O tf.strings.unicode_script operação também pode ser aplicado a multidimensional tf.Tensor s ou tf.RaggedTensor s de pontos de código:

print(tf.strings.unicode_script(batch_chars_ragged))
<tf.RaggedTensor [[25, 25, 25, 25, 25], [25, 25, 25, 25, 0, 25, 25, 0, 25, 25, 25, 0, 25, 25, 25, 25, 25, 25, 25, 0, 25, 25, 25, 25, 25, 25, 25, 25], [25, 25, 25, 25, 25, 25, 25, 25, 25], [0]]>

Exemplo: segmentação simples

A segmentação é a tarefa de dividir o texto em unidades semelhantes a palavras. Isso geralmente é fácil quando caracteres de espaço são usados ​​para separar palavras, mas alguns idiomas (como chinês e japonês) não usam espaços e alguns idiomas (como alemão) contêm compostos longos que devem ser divididos para analisar seu significado. No texto da web, diferentes idiomas e scripts são frequentemente misturados, como em "NY株価" (Bolsa de Valores de Nova York).

Podemos realizar uma segmentação muito grosseira (sem implementar nenhum modelo de ML) usando alterações no script para aproximar os limites das palavras. Isso funcionará para strings como o exemplo "NY株価" acima. Ele também funcionará para a maioria dos idiomas que usam espaços, pois os caracteres de espaço de vários scripts são todos classificados como USCRIPT_COMMON, um código de script especial que difere de qualquer texto real.

# dtype: string; shape: [num_sentences]
#
# The sentences to process.  Edit this line to try out different inputs!
sentence_texts = [u'Hello, world.', u'世界こんにちは']

Primeiro, decodifique as frases em pontos de código de caracteres e encontre o identificador de script para cada caractere.

# dtype: int32; shape: [num_sentences, (num_chars_per_sentence)]
#
# sentence_char_codepoint[i, j] is the codepoint for the j'th character in
# the i'th sentence.
sentence_char_codepoint = tf.strings.unicode_decode(sentence_texts, 'UTF-8')
print(sentence_char_codepoint)

# dtype: int32; shape: [num_sentences, (num_chars_per_sentence)]
#
# sentence_char_scripts[i, j] is the Unicode script of the j'th character in
# the i'th sentence.
sentence_char_script = tf.strings.unicode_script(sentence_char_codepoint)
print(sentence_char_script)
<tf.RaggedTensor [[72, 101, 108, 108, 111, 44, 32, 119, 111, 114, 108, 100, 46], [19990, 30028, 12371, 12435, 12395, 12385, 12399]]>
<tf.RaggedTensor [[25, 25, 25, 25, 25, 0, 0, 25, 25, 25, 25, 25, 0], [17, 17, 20, 20, 20, 20, 20]]>

Use os identificadores de script para determinar onde os limites das palavras devem ser adicionados. Adicione um limite de palavra no início de cada frase e para cada caractere cujo script difere do caractere anterior.

# dtype: bool; shape: [num_sentences, (num_chars_per_sentence)]
#
# sentence_char_starts_word[i, j] is True if the j'th character in the i'th
# sentence is the start of a word.
sentence_char_starts_word = tf.concat(
    [tf.fill([sentence_char_script.nrows(), 1], True),
     tf.not_equal(sentence_char_script[:, 1:], sentence_char_script[:, :-1])],
    axis=1)

# dtype: int64; shape: [num_words]
#
# word_starts[i] is the index of the character that starts the i'th word (in
# the flattened list of characters from all sentences).
word_starts = tf.squeeze(tf.where(sentence_char_starts_word.values), axis=1)
print(word_starts)
tf.Tensor([ 0  5  7 12 13 15], shape=(6,), dtype=int64)

Você pode então usar estas compensações começar a construir uma RaggedTensor que contém a lista de palavras de todos os lotes.

# dtype: int32; shape: [num_words, (num_chars_per_word)]
#
# word_char_codepoint[i, j] is the codepoint for the j'th character in the
# i'th word.
word_char_codepoint = tf.RaggedTensor.from_row_starts(
    values=sentence_char_codepoint.values,
    row_starts=word_starts)
print(word_char_codepoint)
<tf.RaggedTensor [[72, 101, 108, 108, 111], [44, 32], [119, 111, 114, 108, 100], [46], [19990, 30028], [12371, 12435, 12395, 12385, 12399]]>

Para terminar, segmento a palavra Codepoints RaggedTensor volta para frases e codificação em UTF-8 cordas para facilitar a leitura.

# dtype: int64; shape: [num_sentences]
#
# sentence_num_words[i] is the number of words in the i'th sentence.
sentence_num_words = tf.reduce_sum(
    tf.cast(sentence_char_starts_word, tf.int64),
    axis=1)

# dtype: int32; shape: [num_sentences, (num_words_per_sentence), (num_chars_per_word)]
#
# sentence_word_char_codepoint[i, j, k] is the codepoint for the k'th character
# in the j'th word in the i'th sentence.
sentence_word_char_codepoint = tf.RaggedTensor.from_row_lengths(
    values=word_char_codepoint,
    row_lengths=sentence_num_words)
print(sentence_word_char_codepoint)

tf.strings.unicode_encode(sentence_word_char_codepoint, 'UTF-8').to_list()
<tf.RaggedTensor [[[72, 101, 108, 108, 111], [44, 32], [119, 111, 114, 108, 100], [46]], [[19990, 30028], [12371, 12435, 12395, 12385, 12399]]]>
[[b'Hello', b', ', b'world', b'.'],
 [b'\xe4\xb8\x96\xe7\x95\x8c',
  b'\xe3\x81\x93\xe3\x82\x93\xe3\x81\xab\xe3\x81\xa1\xe3\x81\xaf']]