Missed TensorFlow Dev Summit? Check out the video playlist. Watch recordings

tfx.components.ImporterNode

View source on GitHub

Definition for TFX ImporterNode.

Inherits From: BaseNode

tfx.components.ImporterNode(
    instance_name, source_uri, artifact_type, reimport=False, properties=None,
    custom_properties=None
)

ImporterNode is a special TFX node which registers an external resource into MLMD so that downstream nodes can use the registered artifact as input.

Here is an example to use ImporterNode:

... importer = ImporterNode( instance_name='import_schema', source_uri='uri/to/schema' artifact_type=standard_artifacts.Schema, reimport=False) schema_gen = SchemaGen( fixed_schema=importer.outputs['result'], examples=...) ...

Args:

  • instance_name: the name of the ImporterNode instance.
  • source_uri: the URI of the resource that needs to be registered.
  • artifact_type: the type of the artifact to import.
  • reimport: whether or not to re-import as a new artifact if the URI has been imported in before.
  • properties: Dictionary of properties for the imported Artifact. These properties should be ones declared for the given artifact_type (see the PROPERTIES attribute of the definition of the type for details).
  • custom_properties: Dictionary of custom properties for the imported Artifact. These properties should be of type Text or int.

Attributes:

  • _source_uri: the source uri to import.
  • _reimport: whether or not to re-import the URI even if it already exists in MLMD.* component_id: DEPRECATED FUNCTION

  • component_type: DEPRECATED FUNCTION

  • downstream_nodes

  • exec_properties

  • id: Node id, unique across all TFX nodes in a pipeline.

    If instance name is available, node_id will be: . otherwise, node_id will be:

  • inputs

  • outputs

  • type

  • upstream_nodes

Child Classes

class DRIVER_CLASS

Methods

add_downstream_node

View source

add_downstream_node(
    downstream_node
)

add_upstream_node

View source

add_upstream_node(
    upstream_node
)

from_json_dict

View source

@classmethod
from_json_dict(
    cls, dict_data
)

Convert from dictionary data to an object.

get_id

View source

@classmethod
get_id(
    cls, instance_name=None
)

Gets the id of a node.

This can be used during pipeline authoring time. For example: from tfx.components import Trainer

resolver = ResolverNode(..., model=Channel( type=Model, producer_component_id=Trainer.get_id('my_trainer')))

Args:

  • instance_name: (Optional) instance name of a node. If given, the instance name will be taken into consideration when generating the id.

Returns:

an id for the node.

to_json_dict

View source

to_json_dict()

Convert from an object to a JSON serializable dictionary.

Class Variables

  • EXECUTOR_SPEC