![]() |
Returns specs for tf.keras.metrics/losses or tfma.metrics classes.
tfma.metrics.specs_from_metrics(
metrics: Union[List[_TFOrTFMAMetric], Dict[Text, List[_TFOrTFMAMetric]]],
model_names: Optional[List[Text]] = None,
output_names: Optional[List[Text]] = None,
binarize: Optional[tfma.BinarizationOptions
] = None,
aggregate: Optional[tfma.AggregationOptions
] = None,
query_key: Optional[Text] = None,
include_example_count: Optional[bool] = None,
include_weighted_example_count: Optional[bool] = None
) -> List[tfma.MetricsSpec
]
Examples:
metrics_specs = specs_from_metrics([ tf.keras.metrics.BinaryAccuracy(), tf.keras.metrics.AUC(), tf.keras.metrics.Precision(), tf.keras.metrics.Recall(), tfma.metrics.MeanLabel(), tfma.metrics.MeanPrediction() ... ])
metrics_specs = specs_from_metrics({ 'output1': [ tf.keras.metrics.BinaryAccuracy(), tf.keras.metrics.AUC(), tfma.metrics.MeanLabel(), tfma.metrics.MeanPrediction() ... ], 'output2': [ tf.keras.metrics.Precision(), tf.keras.metrics.Recall(), ] })
Args | |
---|---|
metrics
|
List of tf.keras.metrics.Metric, tf.keras.losses.Loss, or tfma.metrics.Metric. For multi-output models a dict of dicts may be passed where the first dict is indexed by the output_name. |
model_names
|
Optional model names (if multi-model evaluation). |
output_names
|
Optional output names (if multi-output models). If the metrics are a dict this should not be set. |
binarize
|
Optional settings for binarizing multi-class/multi-label metrics. |
aggregate
|
Optional settings for aggregating multi-class/multi-label metrics. |
query_key
|
Optional query key for query/ranking based metrics. |
include_example_count
|
True to add example_count metric. Default is True. |
include_weighted_example_count
|
True to add weighted_example_count metric. Default is True. A weighted example count will be added per output for multi-output models. |