Help protect the Great Barrier Reef with TensorFlow on Kaggle Join Challenge

Train and serve a TensorFlow model with TensorFlow Serving

This guide trains a neural network model to classify images of clothing, like sneakers and shirts, saves the trained model, and then serves it with TensorFlow Serving. The focus is on TensorFlow Serving, rather than the modeling and training in TensorFlow, so for a complete example which focuses on the modeling and training see the Basic Classification example.

This guide uses tf.keras, a high-level API to build and train models in TensorFlow.

import sys

# Confirm that we're using Python 3
assert sys.version_info.major is 3, 'Oops, not running Python 3. Use Runtime > Change runtime type'
# TensorFlow and tf.keras
print("Installing dependencies for Colab environment")
!pip install -Uq grpcio==1.26.0

import tensorflow as tf
from tensorflow import keras

# Helper libraries
import numpy as np
import matplotlib.pyplot as plt
import os
import subprocess

print('TensorFlow version: {}'.format(tf.__version__))

Create your model

Import the Fashion MNIST dataset

This guide uses the Fashion MNIST dataset which contains 70,000 grayscale images in 10 categories. The images show individual articles of clothing at low resolution (28 by 28 pixels), as seen here:

Fashion MNIST sprite
Figure 1. Fashion-MNIST samples (by Zalando, MIT License).
 

Fashion MNIST is intended as a drop-in replacement for the classic MNIST dataset—often used as the "Hello, World" of machine learning programs for computer vision. You can access the Fashion MNIST directly from TensorFlow, just import and load the data.

fashion_mnist = keras.datasets.fashion_mnist
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()

# scale the values to 0.0 to 1.0
train_images = train_images / 255.0
test_images = test_images / 255.0

# reshape for feeding into the model
train_images = train_images.reshape(train_images.shape[0], 28, 28, 1)
test_images = test_images.reshape(test_images.shape[0], 28, 28, 1)

class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
               'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']

print('\ntrain_images.shape: {}, of {}'.format(train_images.shape, train_images.dtype))
print('test_images.shape: {}, of {}'.format(test_images.shape, test_images.dtype))
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-labels-idx1-ubyte.gz
32768/29515 [=================================] - 0s 0us/step
40960/29515 [=========================================] - 0s 0us/step
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-images-idx3-ubyte.gz
26427392/26421880 [==============================] - 1s 0us/step
26435584/26421880 [==============================] - 1s 0us/step
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-labels-idx1-ubyte.gz
16384/5148 [===============================================================================================] - 0s 0us/step
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-images-idx3-ubyte.gz
4423680/4422102 [==============================] - 0s 0us/step
4431872/4422102 [==============================] - 0s 0us/step

train_images.shape: (60000, 28, 28, 1), of float64
test_images.shape: (10000, 28, 28, 1), of float64

Train and evaluate your model

Let's use the simplest possible CNN, since we're not focused on the modeling part.

model = keras.Sequential([
  keras.layers.Conv2D(input_shape=(28,28,1), filters=8, kernel_size=3, 
                      strides=2, activation='relu', name='Conv1'),
  keras.layers.Flatten(),
  keras.layers.Dense(10, name='Dense')
])
model.summary()

testing = False
epochs = 5

model.compile(optimizer='adam', 
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=[keras.metrics.SparseCategoricalAccuracy()])
model.fit(train_images, train_labels, epochs=epochs)

test_loss, test_acc = model.evaluate(test_images, test_labels)
print('\nTest accuracy: {}'.format(test_acc))
Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
Conv1 (Conv2D)               (None, 13, 13, 8)         80        
_________________________________________________________________
flatten (Flatten)            (None, 1352)              0         
_________________________________________________________________
Dense (Dense)                (None, 10)                13530     
=================================================================
Total params: 13,610
Trainable params: 13,610
Non-trainable params: 0
_________________________________________________________________
Epoch 1/5
1875/1875 [==============================] - 10s 2ms/step - loss: 0.5376 - sparse_categorical_accuracy: 0.8135
Epoch 2/5
1875/1875 [==============================] - 3s 2ms/step - loss: 0.3919 - sparse_categorical_accuracy: 0.8637
Epoch 3/5
1875/1875 [==============================] - 3s 2ms/step - loss: 0.3568 - sparse_categorical_accuracy: 0.8740
Epoch 4/5
1875/1875 [==============================] - 3s 2ms/step - loss: 0.3378 - sparse_categorical_accuracy: 0.8801
Epoch 5/5
1875/1875 [==============================] - 3s 2ms/step - loss: 0.3231 - sparse_categorical_accuracy: 0.8846
313/313 [==============================] - 1s 1ms/step - loss: 0.3589 - sparse_categorical_accuracy: 0.8739

Test accuracy: 0.8738999962806702

Save your model

To load our trained model into TensorFlow Serving we first need to save it in SavedModel format. This will create a protobuf file in a well-defined directory hierarchy, and will include a version number. TensorFlow Serving allows us to select which version of a model, or "servable" we want to use when we make inference requests. Each version will be exported to a different sub-directory under the given path.

# Fetch the Keras session and save the model
# The signature definition is defined by the input and output tensors,
# and stored with the default serving key
import tempfile

MODEL_DIR = tempfile.gettempdir()
version = 1
export_path = os.path.join(MODEL_DIR, str(version))
print('export_path = {}\n'.format(export_path))

tf.keras.models.save_model(
    model,
    export_path,
    overwrite=True,
    include_optimizer=True,
    save_format=None,
    signatures=None,
    options=None
)

print('\nSaved model:')
!ls -l {export_path}
export_path = /tmp/1
WARNING:absl:Function `_wrapped_model` contains input name(s) Conv1_input with unsupported characters which will be renamed to conv1_input in the SavedModel.
2021-11-09 11:02:24.983534: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them.
INFO:tensorflow:Assets written to: /tmp/1/assets
INFO:tensorflow:Assets written to: /tmp/1/assets
Saved model:
total 96
drwxr-xr-x 2 kbuilder kbuilder  4096 Nov  9 11:02 assets
-rw-rw-r-- 1 kbuilder kbuilder  8204 Nov  9 11:02 keras_metadata.pb
-rw-rw-r-- 1 kbuilder kbuilder 74677 Nov  9 11:02 saved_model.pb
drwxr-xr-x 2 kbuilder kbuilder  4096 Nov  9 11:02 variables

Examine your saved model

We'll use the command line utility saved_model_cli to look at the MetaGraphDefs (the models) and SignatureDefs (the methods you can call) in our SavedModel. See this discussion of the SavedModel CLI in the TensorFlow Guide.

saved_model_cli show --dir {export_path} --all
MetaGraphDef with tag-set: 'serve' contains the following SignatureDefs:

signature_def['__saved_model_init_op']:
  The given SavedModel SignatureDef contains the following input(s):
  The given SavedModel SignatureDef contains the following output(s):
    outputs['__saved_model_init_op'] tensor_info:
        dtype: DT_INVALID
        shape: unknown_rank
        name: NoOp
  Method name is: 

signature_def['serving_default']:
  The given SavedModel SignatureDef contains the following input(s):
    inputs['Conv1_input'] tensor_info:
        dtype: DT_FLOAT
        shape: (-1, 28, 28, 1)
        name: serving_default_Conv1_input:0
  The given SavedModel SignatureDef contains the following output(s):
    outputs['Dense'] tensor_info:
        dtype: DT_FLOAT
        shape: (-1, 10)
        name: StatefulPartitionedCall:0
  Method name is: tensorflow/serving/predict
Traceback (most recent call last):
  File "/tmpfs/src/tf_docs_env/bin/saved_model_cli", line 8, in <module>
    sys.exit(main())
  File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/tools/saved_model_cli.py", line 1204, in main
    args.func(args)
  File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/tools/saved_model_cli.py", line 729, in show
    _show_all(args.dir)
  File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/tools/saved_model_cli.py", line 308, in _show_all
    _show_defined_functions(saved_model_dir)
  File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/tools/saved_model_cli.py", line 188, in _show_defined_functions
    trackable_object = load.load(saved_model_dir)
  File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/saved_model/load.py", line 864, in load
    result = load_internal(export_dir, tags, options)["root"]
  File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/saved_model/load.py", line 903, in load_internal
    ckpt_options, options, filters)
  File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/saved_model/load.py", line 162, in __init__
    self._load_all()
  File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/saved_model/load.py", line 259, in _load_all
    self._load_nodes()
  File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/saved_model/load.py", line 448, in _load_nodes
    slot_variable = optimizer_object.add_slot(
AttributeError: '_UserObject' object has no attribute 'add_slot'

That tells us a lot about our model! In this case we just trained our model, so we already know the inputs and outputs, but if we didn't this would be important information. It doesn't tell us everything, like the fact that this is grayscale image data for example, but it's a great start.

Serve your model with TensorFlow Serving

Add TensorFlow Serving distribution URI as a package source:

We're preparing to install TensorFlow Serving using Aptitude since this Colab runs in a Debian environment. We'll add the tensorflow-model-server package to the list of packages that Aptitude knows about. Note that we're running as root.

import sys
# We need sudo prefix if not on a Google Colab.
if 'google.colab' not in sys.modules:
  SUDO_IF_NEEDED = 'sudo'
else:
  SUDO_IF_NEEDED = ''
# This is the same as you would do from your command line, but without the [arch=amd64], and no sudo
# You would instead do:
# echo "deb [arch=amd64] http://storage.googleapis.com/tensorflow-serving-apt stable tensorflow-model-server tensorflow-model-server-universal" | sudo tee /etc/apt/sources.list.d/tensorflow-serving.list && \
# curl https://storage.googleapis.com/tensorflow-serving-apt/tensorflow-serving.release.pub.gpg | sudo apt-key add -

!echo "deb http://storage.googleapis.com/tensorflow-serving-apt stable tensorflow-model-server tensorflow-model-server-universal" | {SUDO_IF_NEEDED} tee /etc/apt/sources.list.d/tensorflow-serving.list && \
curl https://storage.googleapis.com/tensorflow-serving-apt/tensorflow-serving.release.pub.gpg | {SUDO_IF_NEEDED} apt-key add -
!{SUDO_IF_NEEDED} apt update
deb http://storage.googleapis.com/tensorflow-serving-apt stable tensorflow-model-server tensorflow-model-server-universal
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100  2943  100  2943    0     0   4340      0 --:--:-- --:--:-- --:--:--  4340
OK
Hit:1 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic InRelease
Get:2 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic-updates InRelease [88.7 kB]
Get:3 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic-backports InRelease [74.6 kB]
Hit:4 https://nvidia.github.io/libnvidia-container/stable/ubuntu18.04/amd64  InRelease
Get:5 https://nvidia.github.io/nvidia-container-runtime/ubuntu18.04/amd64  InRelease [1481 B]
Hit:6 https://nvidia.github.io/nvidia-docker/ubuntu18.04/amd64  InRelease
Get:7 http://storage.googleapis.com/tensorflow-serving-apt stable InRelease [3012 B]
Ign:8 http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64  InRelease
Hit:9 http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64  Release
Get:10 https://packages.cloud.google.com/apt eip-cloud-bionic InRelease [5419 B]
Get:11 http://packages.cloud.google.com/apt google-cloud-logging-wheezy InRelease [5483 B]
Get:12 http://security.ubuntu.com/ubuntu bionic-security InRelease [88.7 kB]
Hit:14 http://archive.canonical.com/ubuntu bionic InRelease
Err:10 https://packages.cloud.google.com/apt eip-cloud-bionic InRelease
  The following signatures couldn't be verified because the public key is not available: NO_PUBKEY FEEA9169307EA071 NO_PUBKEY 8B57C5C2836F4BEB
Get:15 http://storage.googleapis.com/tensorflow-serving-apt stable/tensorflow-model-server amd64 Packages [339 B]
Err:11 http://packages.cloud.google.com/apt google-cloud-logging-wheezy InRelease
  The following signatures couldn't be verified because the public key is not available: NO_PUBKEY FEEA9169307EA071 NO_PUBKEY 8B57C5C2836F4BEB
Get:16 http://storage.googleapis.com/tensorflow-serving-apt stable/tensorflow-model-server-universal amd64 Packages [348 B]
Fetched 268 kB in 1s (240 kB/s)



113 packages can be upgraded. Run 'apt list --upgradable' to see them.
W: An error occurred during the signature verification. The repository is not updated and the previous index files will be used. GPG error: https://packages.cloud.google.com/apt eip-cloud-bionic InRelease: The following signatures couldn't be verified because the public key is not available: NO_PUBKEY FEEA9169307EA071 NO_PUBKEY 8B57C5C2836F4BEB
W: An error occurred during the signature verification. The repository is not updated and the previous index files will be used. GPG error: http://packages.cloud.google.com/apt google-cloud-logging-wheezy InRelease: The following signatures couldn't be verified because the public key is not available: NO_PUBKEY FEEA9169307EA071 NO_PUBKEY 8B57C5C2836F4BEB
W: Failed to fetch https://packages.cloud.google.com/apt/dists/eip-cloud-bionic/InRelease  The following signatures couldn't be verified because the public key is not available: NO_PUBKEY FEEA9169307EA071 NO_PUBKEY 8B57C5C2836F4BEB
W: Failed to fetch http://packages.cloud.google.com/apt/dists/google-cloud-logging-wheezy/InRelease  The following signatures couldn't be verified because the public key is not available: NO_PUBKEY FEEA9169307EA071 NO_PUBKEY 8B57C5C2836F4BEB
W: Some index files failed to download. They have been ignored, or old ones used instead.

Install TensorFlow Serving

This is all you need - one command line!

{SUDO_IF_NEEDED} apt-get install tensorflow-model-server
The following packages were automatically installed and are no longer required:
  linux-gcp-5.4-headers-5.4.0-1040 linux-gcp-5.4-headers-5.4.0-1043
  linux-gcp-5.4-headers-5.4.0-1044 linux-gcp-5.4-headers-5.4.0-1049
  linux-headers-5.4.0-1049-gcp linux-image-5.4.0-1049-gcp
  linux-modules-5.4.0-1044-gcp linux-modules-5.4.0-1049-gcp
  linux-modules-extra-5.4.0-1049-gcp
Use 'sudo apt autoremove' to remove them.
The following NEW packages will be installed:
  tensorflow-model-server
0 upgraded, 1 newly installed, 0 to remove and 113 not upgraded.
Need to get 335 MB of archives.
After this operation, 0 B of additional disk space will be used.
Get:1 http://storage.googleapis.com/tensorflow-serving-apt stable/tensorflow-model-server amd64 tensorflow-model-server all 2.7.0 [335 MB]
Fetched 335 MB in 7s (49.2 MB/s)
Selecting previously unselected package tensorflow-model-server.
(Reading database ... 283435 files and directories currently installed.)
Preparing to unpack .../tensorflow-model-server_2.7.0_all.deb ...
Unpacking tensorflow-model-server (2.7.0) ...
Setting up tensorflow-model-server (2.7.0) ...

Start running TensorFlow Serving

This is where we start running TensorFlow Serving and load our model. After it loads we can start making inference requests using REST. There are some important parameters:

  • rest_api_port: The port that you'll use for REST requests.
  • model_name: You'll use this in the URL of REST requests. It can be anything.
  • model_base_path: This is the path to the directory where you've saved your model.
os.environ["MODEL_DIR"] = MODEL_DIR
nohup tensorflow_model_server \
  --rest_api_port=8501 \
  --model_name=fashion_model \
  --model_base_path="${MODEL_DIR}" >server.log 2>&1
tail server.log

Make a request to your model in TensorFlow Serving

First, let's take a look at a random example from our test data.

def show(idx, title):
  plt.figure()
  plt.imshow(test_images[idx].reshape(28,28))
  plt.axis('off')
  plt.title('\n\n{}'.format(title), fontdict={'size': 16})

import random
rando = random.randint(0,len(test_images)-1)
show(rando, 'An Example Image: {}'.format(class_names[test_labels[rando]]))

png

Ok, that looks interesting. How hard is that for you to recognize? Now let's create the JSON object for a batch of three inference requests, and see how well our model recognizes things:

import json
data = json.dumps({"signature_name": "serving_default", "instances": test_images[0:3].tolist()})
print('Data: {} ... {}'.format(data[:50], data[len(data)-52:]))
Data: {"signature_name": "serving_default", "instances": ...  [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0]]]]}

Make REST requests

Newest version of the servable

We'll send a predict request as a POST to our server's REST endpoint, and pass it three examples. We'll ask our server to give us the latest version of our servable by not specifying a particular version.

!pip install -q requests

import requests
headers = {"content-type": "application/json"}
json_response = requests.post('http://localhost:8501/v1/models/fashion_model:predict', data=data, headers=headers)
predictions = json.loads(json_response.text)['predictions']

show(0, 'The model thought this was a {} (class {}), and it was actually a {} (class {})'.format(
  class_names[np.argmax(predictions[0])], np.argmax(predictions[0]), class_names[test_labels[0]], test_labels[0]))

A particular version of the servable

Now let's specify a particular version of our servable. Since we only have one, let's select version 1. We'll also look at all three results.

headers = {"content-type": "application/json"}
json_response = requests.post('http://localhost:8501/v1/models/fashion_model/versions/1:predict', data=data, headers=headers)
predictions = json.loads(json_response.text)['predictions']

for i in range(0,3):
  show(i, 'The model thought this was a {} (class {}), and it was actually a {} (class {})'.format(
    class_names[np.argmax(predictions[i])], np.argmax(predictions[i]), class_names[test_labels[i]], test_labels[i]))