O Google I/O é um embrulho! Fique por dentro das sessões do TensorFlow Ver sessões

Entrada Distribuída

Veja no TensorFlow.org Executar no Google Colab Ver fonte no GitHub Baixar caderno

As APIs tf.distribute fornecem uma maneira fácil para os usuários dimensionarem seu treinamento de uma única máquina para várias máquinas. Ao dimensionar seu modelo, os usuários também precisam distribuir sua entrada em vários dispositivos. tf.distribute fornece APIs com as quais você pode distribuir automaticamente sua entrada entre os dispositivos.

Este guia mostrará as diferentes maneiras pelas quais você pode criar conjuntos de dados distribuídos e iteradores usando APIs tf.distribute . Além disso, serão abordados os seguintes tópicos:

Este guia não cobre o uso de entrada distribuída com APIs Keras.

Conjuntos de dados distribuídos

Para usar APIs tf.distribute para dimensionar, é recomendável que os usuários usem tf.data.Dataset para representar sua entrada. tf.distribute foi feito para funcionar eficientemente com tf.data.Dataset (por exemplo, pré-busca automática de dados em cada dispositivo acelerador) com otimizações de desempenho sendo incorporadas regularmente à implementação. Se você tiver um caso de uso para usar algo diferente de tf.data.Dataset , consulte uma seção posterior deste guia. Em um loop de treinamento não distribuído, os usuários primeiro criam uma instância tf.data.Dataset e, em seguida, iteram sobre os elementos. Por exemplo:

import tensorflow as tf

# Helper libraries
import numpy as np
import os

print(tf.__version__)
2.8.0-rc1
global_batch_size = 16
# Create a tf.data.Dataset object.
dataset = tf.data.Dataset.from_tensors(([1.], [1.])).repeat(100).batch(global_batch_size)

@tf.function
def train_step(inputs):
  features, labels = inputs
  return labels - 0.3 * features

# Iterate over the dataset using the for..in construct.
for inputs in dataset:
  print(train_step(inputs))
tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(16, 1), dtype=float32)
tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(16, 1), dtype=float32)
tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(16, 1), dtype=float32)
tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(16, 1), dtype=float32)
tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(16, 1), dtype=float32)
tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(16, 1), dtype=float32)
tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(4, 1), dtype=float32)

Para permitir que os usuários usem a estratégia tf.distribute com alterações mínimas no código existente de um usuário, foram introduzidas duas APIs que distribuiriam uma instância tf.data.Dataset e retornariam um objeto de conjunto de dados distribuído. Um usuário pode então iterar sobre essa instância de conjunto de dados distribuído e treinar seu modelo como antes. Vejamos agora as duas APIs - tf.distribute.Strategy.experimental_distribute_dataset e tf.distribute.Strategy.distribute_datasets_from_function com mais detalhes:

tf.distribute.Strategy.experimental_distribute_dataset

Uso

Essa API usa uma instância tf.data.Dataset como entrada e retorna uma instância tf.distribute.DistributedDataset . Você deve agrupar o conjunto de dados de entrada com um valor igual ao tamanho global do lote. Esse tamanho de lote global é o número de amostras que você deseja processar em todos os dispositivos em uma etapa. Você pode iterar sobre esse conjunto de dados distribuído de maneira Pythonic ou criar um iterador usando iter . O objeto retornado não é uma instância tf.data.Dataset e não oferece suporte a nenhuma outra API que transforme ou inspecione o conjunto de dados de qualquer forma. Essa é a API recomendada se você não tiver maneiras específicas de fragmentar sua entrada em diferentes réplicas.

global_batch_size = 16
mirrored_strategy = tf.distribute.MirroredStrategy()

dataset = tf.data.Dataset.from_tensors(([1.], [1.])).repeat(100).batch(global_batch_size)
# Distribute input using the `experimental_distribute_dataset`.
dist_dataset = mirrored_strategy.experimental_distribute_dataset(dataset)
# 1 global batch of data fed to the model in 1 step.
print(next(iter(dist_dataset)))
INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0',)
(<tf.Tensor: shape=(16, 1), dtype=float32, numpy=
array([[1.],
       [1.],
       [1.],
       [1.],
       [1.],
       [1.],
       [1.],
       [1.],
       [1.],
       [1.],
       [1.],
       [1.],
       [1.],
       [1.],
       [1.],
       [1.]], dtype=float32)>, <tf.Tensor: shape=(16, 1), dtype=float32, numpy=
array([[1.],
       [1.],
       [1.],
       [1.],
       [1.],
       [1.],
       [1.],
       [1.],
       [1.],
       [1.],
       [1.],
       [1.],
       [1.],
       [1.],
       [1.],
       [1.]], dtype=float32)>)
2022-01-26 05:34:05.342660: W tensorflow/core/grappler/optimizers/data/auto_shard.cc:776] AUTO sharding policy will apply DATA sharding policy as it failed to apply FILE sharding policy because of the following reason: Found an unshardable source dataset: name: "TensorDataset/_2"
op: "TensorDataset"
input: "Placeholder/_0"
input: "Placeholder/_1"
attr {
  key: "Toutput_types"
  value {
    list {
      type: DT_FLOAT
      type: DT_FLOAT
    }
  }
}
attr {
  key: "_cardinality"
  value {
    i: 1
  }
}
attr {
  key: "metadata"
  value {
    s: "\n\017TensorDataset:4"
  }
}
attr {
  key: "output_shapes"
  value {
    list {
      shape {
        dim {
          size: 1
        }
      }
      shape {
        dim {
          size: 1
        }
      }
    }
  }
}
experimental_type {
  type_id: TFT_PRODUCT
  args {
    type_id: TFT_DATASET
    args {
      type_id: TFT_PRODUCT
      args {
        type_id: TFT_TENSOR
        args {
          type_id: TFT_FLOAT
        }
      }
      args {
        type_id: TFT_TENSOR
        args {
          type_id: TFT_FLOAT
        }
      }
    }
  }
  args {
    type_id: TFT_DATASET
    args {
      type_id: TFT_PRODUCT
      args {
        type_id: TFT_TENSOR
        args {
          type_id: TFT_FLOAT
        }
      }
      args {
        type_id: TFT_TENSOR
        args {
          type_id: TFT_FLOAT
        }
      }
    }
  }
}

Propriedades

Lote

tf.distribute rebate a instância tf.data.Dataset de entrada com um novo tamanho de lote que é igual ao tamanho do lote global dividido pelo número de réplicas em sincronia. O número de réplicas em sincronia é igual ao número de dispositivos que estão participando do gradiente reduzido durante o treinamento. Quando um usuário chama next no iterador distribuído, um tamanho de lote de dados por réplica é retornado em cada réplica. A cardinalidade do conjunto de dados rebatizado sempre será um múltiplo do número de réplicas. Aqui estão alguns exemplos:

  • tf.data.Dataset.range(6).batch(4, drop_remainder=False)

    • Sem distribuição:
    • Lote 1: [0, 1, 2, 3]
    • Lote 2: [4, 5]
    • Com distribuição em 2 réplicas. O último lote ([4, 5]) é dividido entre 2 réplicas.

    • Lote 1:

      • Réplica 1:[0, 1]
      • Réplica 2:[2, 3]
    • Lote 2:

      • Réplica 2: [4]
      • Réplica 2: [5]
  • tf.data.Dataset.range(4).batch(4)

    • Sem distribuição:
    • Lote 1: [[0], [1], [2], [3]]
    • Com distribuição em 5 réplicas:
    • Lote 1:
      • Réplica 1: [0]
      • Réplica 2: [1]
      • Réplica 3: [2]
      • Réplica 4: [3]
      • Réplica 5: []
  • tf.data.Dataset.range(8).batch(4)

    • Sem distribuição:
    • Lote 1: [0, 1, 2, 3]
    • Lote 2: [4, 5, 6, 7]
    • Com distribuição em 3 réplicas:
    • Lote 1:
      • Réplica 1: [0, 1]
      • Réplica 2: [2, 3]
      • Réplica 3: []
    • Lote 2:
      • Réplica 1: [4, 5]
      • Réplica 2: [6, 7]
      • Réplica 3: []

O rebatch do conjunto de dados tem uma complexidade de espaço que aumenta linearmente com o número de réplicas. Isso significa que, para o caso de uso de treinamento de vários trabalhadores, o pipeline de entrada pode apresentar erros OOM.

Fragmentação

tf.distribute também fragmenta automaticamente o conjunto de dados de entrada no treinamento de vários trabalhadores com MultiWorkerMirroredStrategy e TPUStrategy . Cada conjunto de dados é criado no dispositivo de CPU do trabalhador. A fragmentação automática de um conjunto de dados em um conjunto de trabalhadores significa que cada trabalhador recebe um subconjunto de todo o conjunto de dados (se o tf.data.experimental.AutoShardPolicy correto estiver definido). Isso é para garantir que, em cada etapa, um tamanho de lote global de elementos de conjunto de dados não sobrepostos seja processado por cada trabalhador. Autosharding tem algumas opções diferentes que podem ser especificadas usando tf.data.experimental.DistributeOptions . Observe que não há autosharding no treinamento de vários trabalhadores com ParameterServerStrategy , e mais informações sobre a criação de conjuntos de dados com essa estratégia podem ser encontradas no tutorial Parameter Server Strategy .

dataset = tf.data.Dataset.from_tensors(([1.],[1.])).repeat(64).batch(16)
options = tf.data.Options()
options.experimental_distribute.auto_shard_policy = tf.data.experimental.AutoShardPolicy.DATA
dataset = dataset.with_options(options)

Existem três opções diferentes que você pode definir para tf.data.experimental.AutoShardPolicy :

  • AUTO: Esta é a opção padrão, o que significa que uma tentativa de fragmentação será feita por FILE. A tentativa de fragmentação por FILE falhará se um conjunto de dados baseado em arquivo não for detectado. tf.distribute então retornará ao sharding por DATA. Observe que, se o conjunto de dados de entrada for baseado em arquivo, mas o número de arquivos for menor que o número de trabalhadores, um InvalidArgumentError será gerado. Se isso acontecer, defina explicitamente a política como AutoShardPolicy.DATA ou divida sua fonte de entrada em arquivos menores, de modo que o número de arquivos seja maior que o número de trabalhadores.
  • FILE: Esta é a opção se você deseja fragmentar os arquivos de entrada em todos os workers. Você deve usar esta opção se o número de arquivos de entrada for muito maior que o número de trabalhadores e os dados nos arquivos estiverem distribuídos uniformemente. A desvantagem dessa opção é ter trabalhadores ociosos se os dados nos arquivos não forem distribuídos uniformemente. Se o número de arquivos for menor que o número de trabalhadores, um InvalidArgumentError será gerado. Se isso acontecer, defina explicitamente a política como AutoShardPolicy.DATA . Por exemplo, vamos distribuir 2 arquivos por 2 workers com 1 réplica cada. O arquivo 1 contém [0, 1, 2, 3, 4, 5] e o arquivo 2 contém [6, 7, 8, 9, 10, 11]. Deixe o número total de réplicas sincronizadas ser 2 e o tamanho global do lote seja 4.

    • Trabalhador 0:
    • Lote 1 = Réplica 1: [0, 1]
    • Lote 2 = Réplica 1: [2, 3]
    • Lote 3 = Réplica 1: [4]
    • Lote 4 = Réplica 1: [5]
    • Trabalhador 1:
    • Lote 1 = Réplica 2: [6, 7]
    • Lote 2 = Réplica 2: [8, 9]
    • Lote 3 = Réplica 2: [10]
    • Lote 4 = Réplica 2: [11]
  • DATA: Isso fará a fragmentação automática dos elementos em todos os trabalhadores. Cada um dos trabalhadores lerá todo o conjunto de dados e processará apenas o fragmento atribuído a ele. Todos os outros fragmentos serão descartados. Isso geralmente é usado se o número de arquivos de entrada for menor que o número de trabalhadores e você quiser uma melhor fragmentação de dados em todos os trabalhadores. A desvantagem é que todo o conjunto de dados será lido em cada trabalhador. Por exemplo, vamos distribuir 1 arquivo por 2 trabalhadores. O arquivo 1 contém [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. Deixe o número total de réplicas em sincronia ser 2.

    • Trabalhador 0:
    • Lote 1 = Réplica 1: [0, 1]
    • Lote 2 = Réplica 1: [4, 5]
    • Lote 3 = Réplica 1: [8, 9]
    • Trabalhador 1:
    • Lote 1 = Réplica 2: [2, 3]
    • Lote 2 = Réplica 2: [6, 7]
    • Lote 3 = Réplica 2: [10, 11]
  • DESATIVADO: se você desativar o autosharding, cada trabalhador processará todos os dados. Por exemplo, vamos distribuir 1 arquivo por 2 trabalhadores. O arquivo 1 contém [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. Deixe o número total de réplicas sincronizadas ser 2. Em seguida, cada trabalhador verá a seguinte distribuição:

    • Trabalhador 0:
    • Lote 1 = Réplica 1: [0, 1]
    • Lote 2 = Réplica 1: [2, 3]
    • Lote 3 = Réplica 1: [4, 5]
    • Lote 4 = Réplica 1: [6, 7]
    • Lote 5 = Réplica 1: [8, 9]
    • Lote 6 = Réplica 1: [10, 11]

    • Trabalhador 1:

    • Lote 1 = Réplica 2: [0, 1]

    • Lote 2 = Réplica 2: [2, 3]

    • Lote 3 = Réplica 2: [4, 5]

    • Lote 4 = Réplica 2: [6, 7]

    • Lote 5 = Réplica 2: [8, 9]

    • Lote 6 = Réplica 2: [10, 11]

Pré-busca

Por padrão, tf.distribute adiciona uma transformação de pré-busca no final da instância tf.data.Dataset fornecida pelo usuário. O argumento para a transformação de pré-busca que é buffer_size é igual ao número de réplicas em sincronia.

tf.distribute.Strategy.distribute_datasets_from_function

Uso

Essa API usa uma função de entrada e retorna uma instância tf.distribute.DistributedDataset . A função de entrada que os usuários passam tem um argumento tf.distribute.InputContext e deve retornar uma instância tf.data.Dataset . Com essa API, tf.distribute não faz mais alterações na instância tf.data.Dataset do usuário retornada da função de entrada. É responsabilidade do usuário agrupar e fragmentar o conjunto de dados. tf.distribute chama a função de entrada no dispositivo de CPU de cada um dos trabalhadores. Além de permitir que os usuários especifiquem sua própria lógica de lote e fragmentação, essa API também demonstra melhor escalabilidade e desempenho em comparação com tf.distribute.Strategy.experimental_distribute_dataset quando usada para treinamento de vários trabalhadores.

mirrored_strategy = tf.distribute.MirroredStrategy()

def dataset_fn(input_context):
  batch_size = input_context.get_per_replica_batch_size(global_batch_size)
  dataset = tf.data.Dataset.from_tensors(([1.],[1.])).repeat(64).batch(16)
  dataset = dataset.shard(
    input_context.num_input_pipelines, input_context.input_pipeline_id)
  dataset = dataset.batch(batch_size)
  dataset = dataset.prefetch(2) # This prefetches 2 batches per device.
  return dataset

dist_dataset = mirrored_strategy.distribute_datasets_from_function(dataset_fn)
INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0',)

Propriedades

Lote

A instância tf.data.Dataset que é o valor de retorno da função de entrada deve ser agrupada usando o tamanho de lote por réplica. O tamanho do lote por réplica é o tamanho do lote global dividido pelo número de réplicas que estão participando do treinamento de sincronização. Isso ocorre porque o tf.distribute chama a função de entrada no dispositivo da CPU de cada um dos trabalhadores. O conjunto de dados criado em um determinado trabalhador deve estar pronto para uso por todas as réplicas desse trabalhador.

Fragmentação

O objeto tf.distribute.InputContext que é passado implicitamente como um argumento para a função de entrada do usuário é criado por tf.distribute sob o capô. Ele tem informações sobre o número de trabalhadores, id de trabalhador atual, etc. Esta função de entrada pode lidar com sharding de acordo com as políticas definidas pelo usuário usando essas propriedades que fazem parte do objeto tf.distribute.InputContext .

Pré-busca

tf.distribute não adiciona uma transformação de pré-busca no final do tf.data.Dataset retornado pela função de entrada fornecida pelo usuário.

Iteradores distribuídos

Semelhante às instâncias tf.data.Dataset não distribuídas, você precisará criar um iterador nas instâncias tf.distribute.DistributedDataset para iterar sobre ela e acessar os elementos no tf.distribute.DistributedDataset . A seguir estão as maneiras pelas quais você pode criar um tf.distribute.DistributedIterator e usá-lo para treinar seu modelo:

Usos

Use uma construção de loop Pythonic for

Você pode usar um loop Pythonic amigável para iterar sobre o tf.distribute.DistributedDataset . Os elementos retornados do tf.distribute.DistributedIterator podem ser um único tf.Tensor ou um tf.distribute.DistributedValues que contém um valor por réplica. Colocar o loop dentro de um tf.function aumentará o desempenho. No entanto, break e return não são suportados atualmente para um loop em um tf.distribute.DistributedDataset que é colocado dentro de um tf.function .

global_batch_size = 16
mirrored_strategy = tf.distribute.MirroredStrategy()

dataset = tf.data.Dataset.from_tensors(([1.],[1.])).repeat(100).batch(global_batch_size)
dist_dataset = mirrored_strategy.experimental_distribute_dataset(dataset)

@tf.function
def train_step(inputs):
  features, labels = inputs
  return labels - 0.3 * features

for x in dist_dataset:
  # train_step trains the model using the dataset elements
  loss = mirrored_strategy.run(train_step, args=(x,))
  print("Loss is ", loss)
INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0',)
2022-01-26 05:34:05.431113: W tensorflow/core/grappler/optimizers/data/auto_shard.cc:776] AUTO sharding policy will apply DATA sharding policy as it failed to apply FILE sharding policy because of the following reason: Found an unshardable source dataset: name: "TensorDataset/_2"
op: "TensorDataset"
input: "Placeholder/_0"
input: "Placeholder/_1"
attr {
  key: "Toutput_types"
  value {
    list {
      type: DT_FLOAT
      type: DT_FLOAT
    }
  }
}
attr {
  key: "_cardinality"
  value {
    i: 1
  }
}
attr {
  key: "metadata"
  value {
    s: "\n\020TensorDataset:29"
  }
}
attr {
  key: "output_shapes"
  value {
    list {
      shape {
        dim {
          size: 1
        }
      }
      shape {
        dim {
          size: 1
        }
      }
    }
  }
}
experimental_type {
  type_id: TFT_PRODUCT
  args {
    type_id: TFT_DATASET
    args {
      type_id: TFT_PRODUCT
      args {
        type_id: TFT_TENSOR
        args {
          type_id: TFT_FLOAT
        }
      }
      args {
        type_id: TFT_TENSOR
        args {
          type_id: TFT_FLOAT
        }
      }
    }
  }
  args {
    type_id: TFT_DATASET
    args {
      type_id: TFT_PRODUCT
      args {
        type_id: TFT_TENSOR
        args {
          type_id: TFT_FLOAT
        }
      }
      args {
        type_id: TFT_TENSOR
        args {
          type_id: TFT_FLOAT
        }
      }
    }
  }
}
Loss is  tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(16, 1), dtype=float32)
Loss is  tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(16, 1), dtype=float32)
Loss is  tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(16, 1), dtype=float32)
Loss is  tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(16, 1), dtype=float32)
Loss is  tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(16, 1), dtype=float32)
Loss is  tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(16, 1), dtype=float32)
Loss is  tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(4, 1), dtype=float32)

Use iter para criar um iterador explícito

Para iterar sobre os elementos em uma instância tf.distribute.DistributedDataset , você pode criar um tf.distribute.DistributedIterator usando a API iter nele. Com um iterador explícito, você pode iterar por um número fixo de etapas. Para obter o próximo elemento de uma instância tf.distribute.DistributedIterator dist_iterator , você pode chamar next(dist_iterator) , dist_iterator.get_next() ou dist_iterator.get_next_as_optional() . Os dois primeiros são essencialmente os mesmos:

num_epochs = 10
steps_per_epoch = 5
for epoch in range(num_epochs):
  dist_iterator = iter(dist_dataset)
  for step in range(steps_per_epoch):
    # train_step trains the model using the dataset elements
    loss = mirrored_strategy.run(train_step, args=(next(dist_iterator),))
    # which is the same as
    # loss = mirrored_strategy.run(train_step, args=(dist_iterator.get_next(),))
    print("Loss is ", loss)
Loss is  tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(16, 1), dtype=float32)
Loss is  tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(16, 1), dtype=float32)
Loss is  tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(16, 1), dtype=float32)
Loss is  tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(16, 1), dtype=float32)
Loss is  tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(16, 1), dtype=float32)
Loss is  tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(16, 1), dtype=float32)
Loss is  tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(16, 1), dtype=float32)
Loss is  tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(16, 1), dtype=float32)
Loss is  tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(16, 1), dtype=float32)
Loss is  tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(16, 1), dtype=float32)
Loss is  tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(16, 1), dtype=float32)
Loss is  tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(16, 1), dtype=float32)
Loss is  tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(16, 1), dtype=float32)
Loss is  tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(16, 1), dtype=float32)
Loss is  tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(16, 1), dtype=float32)
Loss is  tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(16, 1), dtype=float32)
Loss is  tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(16, 1), dtype=float32)
Loss is  tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(16, 1), dtype=float32)
Loss is  tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(16, 1), dtype=float32)
Loss is  tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(16, 1), dtype=float32)
Loss is  tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(16, 1), dtype=float32)
Loss is  tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(16, 1), dtype=float32)
Loss is  tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(16, 1), dtype=float32)
Loss is  tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(16, 1), dtype=float32)
Loss is  tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(16, 1), dtype=float32)
Loss is  tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(16, 1), dtype=float32)
Loss is  tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(16, 1), dtype=float32)
Loss is  tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(16, 1), dtype=float32)
Loss is  tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(16, 1), dtype=float32)
Loss is  tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(16, 1), dtype=float32)
Loss is  tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(16, 1), dtype=float32)
Loss is  tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(16, 1), dtype=float32)
Loss is  tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(16, 1), dtype=float32)
Loss is  tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(16, 1), dtype=float32)
Loss is  tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(16, 1), dtype=float32)
Loss is  tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(16, 1), dtype=float32)
Loss is  tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(16, 1), dtype=float32)
Loss is  tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(16, 1), dtype=float32)
Loss is  tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(16, 1), dtype=float32)
Loss is  tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(16, 1), dtype=float32)
Loss is  tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(16, 1), dtype=float32)
Loss is  tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(16, 1), dtype=float32)
Loss is  tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(16, 1), dtype=float32)
Loss is  tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(16, 1), dtype=float32)
Loss is  tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(16, 1), dtype=float32)
Loss is  tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(16, 1), dtype=float32)
Loss is  tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(16, 1), dtype=float32)
Loss is  tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(16, 1), dtype=float32)
Loss is  tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(16, 1), dtype=float32)
Loss is  tf.Tensor(
[[0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]
 [0.7]], shape=(16, 1), dtype=float32)

Com next() ou tf.distribute.DistributedIterator.get_next() , se o tf.distribute.DistributedIterator chegar ao fim, um erro OutOfRange será lançado. O cliente pode pegar o erro no lado do python e continuar fazendo outros trabalhos, como checkpoints e avaliações. No entanto, isso não funcionará se você estiver usando um loop de treinamento de host (ou seja, execute várias etapas por tf.function ), que se parece com:

@tf.function
def train_fn(iterator):
  for _ in tf.range(steps_per_loop):
    strategy.run(step_fn, args=(next(iterator),))

train_fn contém várias etapas envolvendo o corpo da etapa dentro de um tf.range . Nesse caso, diferentes iterações no loop sem dependência podem iniciar em paralelo, portanto, um erro OutOfRange pode ser acionado em iterações posteriores antes que o cálculo das iterações anteriores termine. Assim que um erro OutOfRange for lançado, todas as operações na função serão encerradas imediatamente. Se este for um caso que você gostaria de evitar, uma alternativa que não gera um erro OutOfRange é tf.distribute.DistributedIterator.get_next_as_optional() . get_next_as_optional retorna um tf.experimental.Optional que contém o próximo elemento ou nenhum valor se o tf.distribute.DistributedIterator chegou ao fim.

# You can break the loop with get_next_as_optional by checking if the Optional contains value
global_batch_size = 4
steps_per_loop = 5
strategy = tf.distribute.MirroredStrategy(devices=["GPU:0", "CPU:0"])

dataset = tf.data.Dataset.range(9).batch(global_batch_size)
distributed_iterator = iter(strategy.experimental_distribute_dataset(dataset))

@tf.function
def train_fn(distributed_iterator):
  for _ in tf.range(steps_per_loop):
    optional_data = distributed_iterator.get_next_as_optional()
    if not optional_data.has_value():
      break
    per_replica_results = strategy.run(lambda x:x, args=(optional_data.get_value(),))
    tf.print(strategy.experimental_local_results(per_replica_results))
train_fn(distributed_iterator)
WARNING:tensorflow:There are non-GPU devices in `tf.distribute.Strategy`, not using nccl allreduce.
INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0', '/job:localhost/replica:0/task:0/device:CPU:0')
2022-01-26 05:34:07.300202: W tensorflow/core/grappler/optimizers/data/auto_shard.cc:776] AUTO sharding policy will apply DATA sharding policy as it failed to apply FILE sharding policy because of the following reason: Found an unshardable source dataset: name: "RangeDataset/_3"
op: "RangeDataset"
input: "Const/_0"
input: "Const/_1"
input: "Const/_2"
attr {
  key: "_cardinality"
  value {
    i: 9
  }
}
attr {
  key: "metadata"
  value {
    s: "\n\020RangeDataset:104"
  }
}
attr {
  key: "output_shapes"
  value {
    list {
      shape {
      }
    }
  }
}
attr {
  key: "output_types"
  value {
    list {
      type: DT_INT64
    }
  }
}
experimental_type {
  type_id: TFT_PRODUCT
  args {
    type_id: TFT_DATASET
    args {
      type_id: TFT_PRODUCT
      args {
        type_id: TFT_TENSOR
        args {
          type_id: TFT_INT64
        }
      }
    }
  }
  args {
    type_id: TFT_DATASET
    args {
      type_id: TFT_PRODUCT
      args {
        type_id: TFT_TENSOR
        args {
          type_id: TFT_INT64
        }
      }
    }
  }
}

2022-01-26 05:34:07.355301: W tensorflow/core/framework/dataset.cc:768] Input of GeneratorDatasetOp::Dataset will not be optimized because the dataset does not implement the AsGraphDefInternal() method needed to apply optimizations.
([0 1], [2 3])
([4 5], [6 7])
([8], [])

Usando a propriedade element_spec

Se você passar os elementos de um conjunto de dados distribuído para um tf.function e desejar uma garantia tf.TypeSpec , poderá especificar o argumento input_signature do tf.function . A saída de um conjunto de dados distribuído é tf.distribute.DistributedValues que pode representar a entrada para um único dispositivo ou vários dispositivos. Para obter o tf.TypeSpec correspondente a esse valor distribuído, você pode usar a propriedade element_spec do conjunto de dados distribuído ou objeto iterador distribuído.

global_batch_size = 16
epochs = 5
steps_per_epoch = 5
mirrored_strategy = tf.distribute.MirroredStrategy()

dataset = tf.data.Dataset.from_tensors(([1.],[1.])).repeat(100).batch(global_batch_size)
dist_dataset = mirrored_strategy.experimental_distribute_dataset(dataset)

@tf.function(input_signature=[dist_dataset.element_spec])
def train_step(per_replica_inputs):
  def step_fn(inputs):
    return 2 * inputs

  return mirrored_strategy.run(step_fn, args=(per_replica_inputs,))

for _ in range(epochs):
  iterator = iter(dist_dataset)
  for _ in range(steps_per_epoch):
    output = train_step(next(iterator))
    tf.print(output)
INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0',)
2022-01-26 05:34:07.611498: W tensorflow/core/grappler/optimizers/data/auto_shard.cc:776] AUTO sharding policy will apply DATA sharding policy as it failed to apply FILE sharding policy because of the following reason: Found an unshardable source dataset: name: "TensorDataset/_2"
op: "TensorDataset"
input: "Placeholder/_0"
input: "Placeholder/_1"
attr {
  key: "Toutput_types"
  value {
    list {
      type: DT_FLOAT
      type: DT_FLOAT
    }
  }
}
attr {
  key: "_cardinality"
  value {
    i: 1
  }
}
attr {
  key: "metadata"
  value {
    s: "\n\021TensorDataset:122"
  }
}
attr {
  key: "output_shapes"
  value {
    list {
      shape {
        dim {
          size: 1
        }
      }
      shape {
        dim {
          size: 1
        }
      }
    }
  }
}
experimental_type {
  type_id: TFT_PRODUCT
  args {
    type_id: TFT_DATASET
    args {
      type_id: TFT_PRODUCT
      args {
        type_id: TFT_TENSOR
        args {
          type_id: TFT_FLOAT
        }
      }
      args {
        type_id: TFT_TENSOR
        args {
          type_id: TFT_FLOAT
        }
      }
    }
  }
  args {
    type_id: TFT_DATASET
    args {
      type_id: TFT_PRODUCT
      args {
        type_id: TFT_TENSOR
        args {
          type_id: TFT_FLOAT
        }
      }
      args {
        type_id: TFT_TENSOR
        args {
          type_id: TFT_FLOAT
        }
      }
    }
  }
}
([[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]])
([[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]])
([[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]])
([[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]])
([[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]])
([[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]])
([[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]])
([[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]])
([[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]])
([[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]])
([[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]])
([[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]])
([[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]])
([[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]])
([[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]])
([[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]])
([[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]])
([[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]])
([[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]])
([[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]])
([[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]])
([[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]])
([[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]])
([[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]])
([[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]], [[1]
 [1]
 [1]
 ...
 [1]
 [1]
 [1]])

Lotes Parciais

Lotes parciais são encontrados quando as instâncias tf.data.Dataset que os usuários criam podem conter tamanhos de lote que não são divisíveis uniformemente pelo número de réplicas ou quando a cardinalidade da instância do conjunto de dados não é divisível pelo tamanho do lote. Isso significa que quando o conjunto de dados é distribuído em várias réplicas, a next chamada em alguns iteradores resultará em um OutOfRangeError. Para lidar com esse caso de uso, tf.distribute retorna lotes fictícios de tamanho de lote 0 em réplicas que não têm mais dados para processar.

Para o caso de trabalhador único, se os dados não forem retornados pela next chamada no iterador, lotes fictícios de tamanho de lote 0 serão criados e usados ​​junto com os dados reais no conjunto de dados. No caso de lotes parciais, o último lote global de dados conterá dados reais ao lado de lotes fictícios de dados. A condição de parada para processamento de dados agora verifica se alguma das réplicas possui dados. Se não houver dados em nenhuma das réplicas, um erro OutOfRange será lançado.

Para o caso de vários trabalhadores, o valor booleano que representa a presença de dados em cada um dos trabalhadores é agregado usando comunicação de réplica cruzada e isso é usado para identificar se todos os trabalhadores concluíram o processamento do conjunto de dados distribuído. Como isso envolve comunicação entre trabalhadores, há alguma penalidade de desempenho envolvida.

Ressalvas

  • Ao usar as APIs tf.distribute.Strategy.experimental_distribute_dataset com uma configuração de vários trabalhadores, os usuários passam um tf.data.Dataset que lê arquivos. Se tf.data.experimental.AutoShardPolicy estiver definido como AUTO ou FILE , o tamanho real do lote por etapa poderá ser menor do que o tamanho do lote global definido pelo usuário. Isso pode acontecer quando os elementos restantes no arquivo são menores que o tamanho global do lote. Os usuários podem esgotar o conjunto de dados sem depender do número de etapas a serem executadas ou definir tf.data.experimental.AutoShardPolicy como DATA para contornar isso.

  • No momento, as transformações de conjunto de dados com estado não são compatíveis com tf.distribute e quaisquer operações com estado que o conjunto de dados possa ter são ignoradas no momento. Por exemplo, se seu conjunto de dados tem um map_fn que usa tf.random.uniform para girar uma imagem, então você tem um gráfico de conjunto de dados que depende do estado (ou seja, a semente aleatória) na máquina local onde o processo python está sendo executado.

  • As tf.data.experimental.OptimizationOptions experimentais que são desabilitadas por padrão podem em certos contextos -- como quando usadas junto com tf.distribute -- causar uma degradação de desempenho. Você só deve habilitá-los depois de validar que eles beneficiam o desempenho de sua carga de trabalho em uma configuração de distribuição.

  • Consulte este guia para saber como otimizar seu pipeline de entrada com tf.data em geral. Algumas dicas adicionais:

    • Se você tiver vários trabalhadores e estiver usando tf.data.Dataset.list_files para criar um conjunto de dados de todos os arquivos que correspondam a um ou mais padrões glob, lembre-se de definir o argumento seed ou defina shuffle=False para que cada trabalhador fragmente o arquivo de forma consistente.

    • Se o pipeline de entrada incluir tanto o embaralhamento dos dados no nível do registro quanto a análise dos dados, a menos que os dados não analisados ​​sejam significativamente maiores do que os dados analisados ​​(o que geralmente não é o caso), embaralhe primeiro e depois analise, conforme mostrado no exemplo a seguir. Isso pode beneficiar o uso e o desempenho da memória.

d = tf.data.Dataset.list_files(pattern, shuffle=False)
d = d.shard(num_workers, worker_index)
d = d.repeat(num_epochs)
d = d.shuffle(shuffle_buffer_size)
d = d.interleave(tf.data.TFRecordDataset,
                 cycle_length=num_readers, block_length=1)
d = d.map(parser_fn, num_parallel_calls=num_map_threads)
  • tf.data.Dataset.shuffle(buffer_size, seed=None, reshuffle_each_iteration=None) mantém um buffer interno de elementos buffer_size e, assim, reduzir buffer_size pode aliviar o problema de OOM.

  • A ordem em que os dados são processados ​​pelos trabalhadores ao usar tf.distribute.experimental_distribute_dataset ou tf.distribute.distribute_datasets_from_function não é garantida. Isso geralmente é necessário se você estiver usando tf.distribute para dimensionar a previsão. No entanto, você pode inserir um índice para cada elemento no lote e ordenar as saídas de acordo. O snippet a seguir é um exemplo de como ordenar saídas.

mirrored_strategy = tf.distribute.MirroredStrategy()
dataset_size = 24
batch_size = 6
dataset = tf.data.Dataset.range(dataset_size).enumerate().batch(batch_size)
dist_dataset = mirrored_strategy.experimental_distribute_dataset(dataset)

def predict(index, inputs):
  outputs = 2 * inputs
  return index, outputs

result = {}
for index, inputs in dist_dataset:
  output_index, outputs = mirrored_strategy.run(predict, args=(index, inputs))
  indices = list(mirrored_strategy.experimental_local_results(output_index))
  rindices = []
  for a in indices:
    rindices.extend(a.numpy())
  outputs = list(mirrored_strategy.experimental_local_results(outputs))
  routputs = []
  for a in outputs:
    routputs.extend(a.numpy())
  for i, value in zip(rindices, routputs):
    result[i] = value

print(result)
INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0',)
WARNING:tensorflow:Using MirroredStrategy eagerly has significant overhead currently. We will be working on improving this in the future, but for now please wrap `call_for_each_replica` or `experimental_run` or `run` inside a tf.function to get the best performance.
WARNING:tensorflow:Using MirroredStrategy eagerly has significant overhead currently. We will be working on improving this in the future, but for now please wrap `call_for_each_replica` or `experimental_run` or `run` inside a tf.function to get the best performance.
WARNING:tensorflow:Using MirroredStrategy eagerly has significant overhead currently. We will be working on improving this in the future, but for now please wrap `call_for_each_replica` or `experimental_run` or `run` inside a tf.function to get the best performance.
WARNING:tensorflow:Using MirroredStrategy eagerly has significant overhead currently. We will be working on improving this in the future, but for now please wrap `call_for_each_replica` or `experimental_run` or `run` inside a tf.function to get the best performance.
{0: 0, 1: 2, 2: 4, 3: 6, 4: 8, 5: 10, 6: 12, 7: 14, 8: 16, 9: 18, 10: 20, 11: 22, 12: 24, 13: 26, 14: 28, 15: 30, 16: 32, 17: 34, 18: 36, 19: 38, 20: 40, 21: 42, 22: 44, 23: 46}
2022-01-26 05:34:08.978884: W tensorflow/core/grappler/optimizers/data/auto_shard.cc:776] AUTO sharding policy will apply DATA sharding policy as it failed to apply FILE sharding policy because of the following reason: Found an unshardable source dataset: name: "RangeDataset/_3"
op: "RangeDataset"
input: "Const/_4"
input: "Const/_1"
input: "Const/_2"
attr {
  key: "_cardinality"
  value {
    i: 9223372036854775807
  }
}
attr {
  key: "metadata"
  value {
    s: "\n\020RangeDataset:162"
  }
}
attr {
  key: "output_shapes"
  value {
    list {
      shape {
      }
    }
  }
}
attr {
  key: "output_types"
  value {
    list {
      type: DT_INT64
    }
  }
}
experimental_type {
  type_id: TFT_PRODUCT
  args {
    type_id: TFT_DATASET
    args {
      type_id: TFT_PRODUCT
      args {
        type_id: TFT_TENSOR
        args {
          type_id: TFT_INT64
        }
      }
    }
  }
  args {
    type_id: TFT_DATASET
    args {
      type_id: TFT_PRODUCT
      args {
        type_id: TFT_TENSOR
        args {
          type_id: TFT_INT64
        }
      }
    }
  }
}

Como distribuo meus dados se não estiver usando uma instância tf.data.Dataset canônica?

Às vezes, os usuários não podem usar um tf.data.Dataset para representar sua entrada e, posteriormente, as APIs mencionadas acima para distribuir o conjunto de dados para vários dispositivos. Nesses casos, você pode usar tensores brutos ou entradas de um gerador.

Use experimental_distribute_values_from_function para entradas de tensor arbitrárias

strategy.run aceita tf.distribute.DistributedValues que é a saída de next(iterator) . Para passar os valores do tensor, use experimental_distribute_values_from_function para construir tf.distribute.DistributedValues a partir de tensores brutos.

mirrored_strategy = tf.distribute.MirroredStrategy()
worker_devices = mirrored_strategy.extended.worker_devices

def value_fn(ctx):
  return tf.constant(1.0)

distributed_values = mirrored_strategy.experimental_distribute_values_from_function(value_fn)
for _ in range(4):
  result = mirrored_strategy.run(lambda x:x, args=(distributed_values,))
  print(result)
INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0',)
WARNING:tensorflow:Using MirroredStrategy eagerly has significant overhead currently. We will be working on improving this in the future, but for now please wrap `call_for_each_replica` or `experimental_run` or `run` inside a tf.function to get the best performance.
tf.Tensor(1.0, shape=(), dtype=float32)
tf.Tensor(1.0, shape=(), dtype=float32)
tf.Tensor(1.0, shape=(), dtype=float32)
tf.Tensor(1.0, shape=(), dtype=float32)

Use tf.data.Dataset.from_generator se sua entrada for de um gerador

Se você tiver uma função geradora que deseja usar, poderá criar uma instância tf.data.Dataset usando a API from_generator .

mirrored_strategy = tf.distribute.MirroredStrategy()
def input_gen():
  while True:
    yield np.random.rand(4)

# use Dataset.from_generator
dataset = tf.data.Dataset.from_generator(
    input_gen, output_types=(tf.float32), output_shapes=tf.TensorShape([4]))
dist_dataset = mirrored_strategy.experimental_distribute_dataset(dataset)
iterator = iter(dist_dataset)
for _ in range(4):
  mirrored_strategy.run(lambda x:x, args=(next(iterator),))
INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0',)
2022-01-26 05:34:09.091386: W tensorflow/core/grappler/optimizers/data/auto_shard.cc:776] AUTO sharding policy will apply DATA sharding policy as it failed to apply FILE sharding policy because of the following reason: Did not find a shardable source, walked to a node which is not a dataset: name: "FlatMapDataset/_2"
op: "FlatMapDataset"
input: "TensorDataset/_1"
attr {
  key: "Targuments"
  value {
    list {
    }
  }
}
attr {
  key: "_cardinality"
  value {
    i: -2
  }
}
attr {
  key: "f"
  value {
    func {
      name: "__inference_Dataset_flat_map_flat_map_fn_3980"
    }
  }
}
attr {
  key: "metadata"
  value {
    s: "\n\022FlatMapDataset:178"
  }
}
attr {
  key: "output_shapes"
  value {
    list {
      shape {
        dim {
          size: 4
        }
      }
    }
  }
}
attr {
  key: "output_types"
  value {
    list {
      type: DT_FLOAT
    }
  }
}
experimental_type {
  type_id: TFT_PRODUCT
  args {
    type_id: TFT_DATASET
    args {
      type_id: TFT_PRODUCT
      args {
        type_id: TFT_TENSOR
        args {
          type_id: TFT_FLOAT
        }
      }
    }
  }
  args {
    type_id: TFT_DATASET
    args {
      type_id: TFT_PRODUCT
      args {
        type_id: TFT_TENSOR
        args {
          type_id: TFT_FLOAT
        }
      }
    }
  }
}
. Consider either turning off auto-sharding or switching the auto_shard_policy to DATA to shard this dataset. You can do this by creating a new `tf.data.Options()` object then setting `options.experimental_distribute.auto_shard_policy = AutoShardPolicy.DATA` before applying the options object to the dataset via `dataset.with_options(options)`.