tf.random_uniform_initializer

Class random_uniform_initializer

Inherits From: Initializer

Aliases:

  • Class tf.initializers.random_uniform
  • Class tf.keras.initializers.RandomUniform
  • Class tf.random_uniform_initializer

Defined in tensorflow/python/ops/init_ops.py.

See the guide: Variables > Sharing Variables

Initializer that generates tensors with a uniform distribution.

Args:

  • minval: A python scalar or a scalar tensor. Lower bound of the range of random values to generate.
  • maxval: A python scalar or a scalar tensor. Upper bound of the range of random values to generate. Defaults to 1 for float types.
  • seed: A Python integer. Used to create random seeds. See tf.set_random_seed for behavior.
  • dtype: The data type.

Methods

__init__

__init__(
    minval=0,
    maxval=None,
    seed=None,
    dtype=tf.float32
)

__call__

__call__(
    shape,
    dtype=None,
    partition_info=None
)

from_config

from_config(
    cls,
    config
)

Instantiates an initializer from a configuration dictionary.

Example:

initializer = RandomUniform(-1, 1)
config = initializer.get_config()
initializer = RandomUniform.from_config(config)

Args:

  • config: A Python dictionary. It will typically be the output of get_config.

Returns:

An Initializer instance.

get_config

get_config()