tf.layers.conv1d(inputs, filters, kernel_size, strides=1, padding='valid', data_format='channels_last', dilation_rate=1, activation=None, use_bias=True, kernel_initializer=None, bias_initializer=tf.zeros_initializer(), kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, trainable=True, name=None, reuse=None)

tf.layers.conv1d(inputs, filters, kernel_size, strides=1, padding='valid', data_format='channels_last', dilation_rate=1, activation=None, use_bias=True, kernel_initializer=None, bias_initializer=tf.zeros_initializer(), kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, trainable=True, name=None, reuse=None)

Functional interface for 1D convolution layer (e.g. temporal convolution).

This layer creates a convolution kernel that is convolved (actually cross-correlated) with the layer input to produce a tensor of outputs. If use_bias is True (and a bias_initializer is provided), a bias vector is created and added to the outputs. Finally, if activation is not None, it is applied to the outputs as well.

Arguments:

  • inputs: Tensor input.
  • filters: integer, the dimensionality of the output space (i.e. the number output of filters in the convolution).
  • kernel_size: An integer or tuple/list of a single integer, specifying the length of the 1D convolution window.
  • strides: an integer or tuple/list of a single integer, specifying the stride length of the convolution. Specifying any stride value != 1 is incompatible with specifying any dilation_rate value != 1.
  • padding: one of "valid" or "same" (case-insensitive).
  • data_format: A string, one of channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch, length, channels) while channels_first corresponds to inputs with shape (batch, channels, length).
  • dilation_rate: an integer or tuple/list of a single integer, specifying the dilation rate to use for dilated convolution. Currently, specifying any dilation_rate value != 1 is incompatible with specifying any strides value != 1.
  • activation: Activation function. Set it to None to maintain a linear activation.
  • use_bias: Boolean, whether the layer uses a bias.
  • kernel_initializer: An initializer for the convolution kernel.
  • bias_initializer: An initializer for the bias vector. If None, no bias will be applied.
  • kernel_regularizer: Optional regularizer for the convolution kernel.
  • bias_regularizer: Optional regularizer for the bias vector.
  • activity_regularizer: Regularizer function for the output.
  • trainable: Boolean, if True also add variables to the graph collection GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).
  • name: A string, the name of the layer.
  • reuse: Boolean, whether to reuse the weights of a previous layer by the same name.

Returns:

Output tensor.

Defined in tensorflow/python/layers/convolutional.py.