tf.losses.hinge_loss(labels, logits, weights=1.0, scope=None, loss_collection=tf.GraphKeys.LOSSES)

tf.losses.hinge_loss(labels, logits, weights=1.0, scope=None, loss_collection=tf.GraphKeys.LOSSES)

Adds a hinge loss to the training procedure.

Args:

  • labels: The ground truth output tensor. Its shape should match the shape of logits. The values of the tensor are expected to be 0.0 or 1.0.
  • logits: The logits, a float tensor.
  • weights: Optional Tensor whose rank is either 0, or the same rank as labels, and must be broadcastable to labels (i.e., all dimensions must be either 1, or the same as the corresponding losses dimension).
  • scope: The scope for the operations performed in computing the loss.
  • loss_collection: collection to which the loss will be added.

Returns:

A scalar Tensor of the loss value.

Raises:

  • ValueError: If the shapes of logits and labels don't match.

Defined in tensorflow/python/ops/losses/losses_impl.py.