tf.scatter_sub(ref, indices, updates, use_locking=None, name=None)

tf.scatter_sub(ref, indices, updates, use_locking=None, name=None)

See the guide: Variables > Sparse Variable Updates

Subtracts sparse updates to a variable reference.

# Scalar indices
ref[indices, ...] -= updates[...]

# Vector indices (for each i)
ref[indices[i], ...] -= updates[i, ...]

# High rank indices (for each i, ..., j)
ref[indices[i, ..., j], ...] -= updates[i, ..., j, ...]

This operation outputs ref after the update is done. This makes it easier to chain operations that need to use the reset value.

Duplicate entries are handled correctly: if multiple indices reference the same location, their (negated) contributions add.

Requires updates.shape = indices.shape + ref.shape[1:].

Args:

  • ref: A mutable Tensor. Must be one of the following types: float32, float64, int64, int32, uint8, uint16, int16, int8, complex64, complex128, qint8, quint8, qint32, half. Should be from a Variable node.
  • indices: A Tensor. Must be one of the following types: int32, int64. A tensor of indices into the first dimension of ref.
  • updates: A Tensor. Must have the same type as ref. A tensor of updated values to subtract from ref.
  • use_locking: An optional bool. Defaults to False. If True, the subtraction will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.
  • name: A name for the operation (optional).

Returns:

Same as ref. Returned as a convenience for operations that want to use the updated values after the update is done.

Defined in tensorflow/python/ops/gen_state_ops.py.