tf.sparse_reduce_sum_sparse(sp_input, axis=None, keep_dims=False, reduction_axes=None)

tf.sparse_reduce_sum_sparse(sp_input, axis=None, keep_dims=False, reduction_axes=None)

See the guide: Sparse Tensors > Reduction

Computes the sum of elements across dimensions of a SparseTensor.

This Op takes a SparseTensor and is the sparse counterpart to tf.reduce_sum(). In contrast to SparseReduceSum, this Op returns a SparseTensor.

Reduces sp_input along the dimensions given in reduction_axes. Unless keep_dims is true, the rank of the tensor is reduced by 1 for each entry in reduction_axes. If keep_dims is true, the reduced dimensions are retained with length 1.

If reduction_axes has no entries, all dimensions are reduced, and a tensor with a single element is returned. Additionally, the axes can be negative, which are interpreted according to the indexing rules in Python.

Args:

  • sp_input: The SparseTensor to reduce. Should have numeric type.
  • axis: The dimensions to reduce; list or scalar. If None (the default), reduces all dimensions.
  • keep_dims: If true, retain reduced dimensions with length 1.
  • reduction_axes: Deprecated name of axis

Returns:

The reduced SparseTensor.

Defined in tensorflow/python/ops/sparse_ops.py.