### class tf.train.AdamOptimizer

See the guide: Training > Optimizers

Optimizer that implements the Adam algorithm.

See Kingma et. al., 2014 (pdf).

## Methods

### __init__(learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-08, use_locking=False, name='Adam')

Initialization:

m_0 <- 0 (Initialize initial 1st moment vector)
v_0 <- 0 (Initialize initial 2nd moment vector)
t <- 0 (Initialize timestep)


The update rule for variable with gradient g uses an optimization described at the end of section2 of the paper:

t <- t + 1
lr_t <- learning_rate * sqrt(1 - beta2^t) / (1 - beta1^t)

m_t <- beta1 * m_{t-1} + (1 - beta1) * g
v_t <- beta2 * v_{t-1} + (1 - beta2) * g * g
variable <- variable - lr_t * m_t / (sqrt(v_t) + epsilon)


The default value of 1e-8 for epsilon might not be a good default in general. For example, when training an Inception network on ImageNet a current good choice is 1.0 or 0.1.

Note that in dense implement of this algorithm, m_t, v_t and variable will update even if g is zero, but in sparse implement, m_t, v_t and variable will not update in iterations g is zero.

#### Args:

• learning_rate: A Tensor or a floating point value. The learning rate.
• beta1: A float value or a constant float tensor. The exponential decay rate for the 1st moment estimates.
• beta2: A float value or a constant float tensor. The exponential decay rate for the 2nd moment estimates.
• epsilon: A small constant for numerical stability.
• use_locking: If True use locks for update operations.
• name: Optional name for the operations created when applying gradients. Defaults to "Adam".

### apply_gradients(grads_and_vars, global_step=None, name=None)

This is the second part of minimize(). It returns an Operation that applies gradients.

#### Args:

• grads_and_vars: List of (gradient, variable) pairs as returned by compute_gradients().
• global_step: Optional Variable to increment by one after the variables have been updated.
• name: Optional name for the returned operation. Default to the name passed to the Optimizer constructor.

#### Returns:

An Operation that applies the specified gradients. If global_step was not None, that operation also increments global_step.

#### Raises:

• TypeError: If grads_and_vars is malformed.
• ValueError: If none of the variables have gradients.

### compute_gradients(loss, var_list=None, gate_gradients=GATE_OP, aggregation_method=None, colocate_gradients_with_ops=False, grad_loss=None)

Compute gradients of loss for the variables in var_list.

This is the first part of minimize(). It returns a list of (gradient, variable) pairs where "gradient" is the gradient for "variable". Note that "gradient" can be a Tensor, an IndexedSlices, or None if there is no gradient for the given variable.

#### Args:

• loss: A Tensor containing the value to minimize.
• var_list: Optional list of tf.Variable to update to minimize loss. Defaults to the list of variables collected in the graph under the key GraphKey.TRAINABLE_VARIABLES.
• gate_gradients: How to gate the computation of gradients. Can be GATE_NONE, GATE_OP, or GATE_GRAPH.
• aggregation_method: Specifies the method used to combine gradient terms. Valid values are defined in the class AggregationMethod.
• colocate_gradients_with_ops: If True, try colocating gradients with the corresponding op.
• grad_loss: Optional. A Tensor holding the gradient computed for loss.

#### Returns:

A list of (gradient, variable) pairs. Variable is always present, but gradient can be None.

#### Raises:

• TypeError: If var_list contains anything else than Variable objects.
• ValueError: If some arguments are invalid.

### get_slot(var, name)

Return a slot named name created for var by the Optimizer.

Some Optimizer subclasses use additional variables. For example Momentum and Adagrad use variables to accumulate updates. This method gives access to these Variable objects if for some reason you need them.

Use get_slot_names() to get the list of slot names created by the Optimizer.

#### Args:

• var: A variable passed to minimize() or apply_gradients().
• name: A string.

#### Returns:

The Variable for the slot if it was created, None otherwise.

### get_slot_names()

Return a list of the names of slots created by the Optimizer.

See get_slot().

#### Returns:

A list of strings.

### minimize(loss, global_step=None, var_list=None, gate_gradients=GATE_OP, aggregation_method=None, colocate_gradients_with_ops=False, name=None, grad_loss=None)

Add operations to minimize loss by updating var_list.

This method simply combines calls compute_gradients() and apply_gradients(). If you want to process the gradient before applying them call compute_gradients() and apply_gradients() explicitly instead of using this function.

#### Args:

• loss: A Tensor containing the value to minimize.
• global_step: Optional Variable to increment by one after the variables have been updated.
• var_list: Optional list of Variable objects to update to minimize loss. Defaults to the list of variables collected in the graph under the key GraphKeys.TRAINABLE_VARIABLES.
• gate_gradients: How to gate the computation of gradients. Can be GATE_NONE, GATE_OP, or GATE_GRAPH.
• aggregation_method: Specifies the method used to combine gradient terms. Valid values are defined in the class AggregationMethod.
• colocate_gradients_with_ops: If True, try colocating gradients with the corresponding op.
• name: Optional name for the returned operation.
• grad_loss: Optional. A Tensor holding the gradient computed for loss.

#### Returns:

An Operation that updates the variables in var_list. If global_step was not None, that operation also increments global_step.

#### Raises:

• ValueError: If some of the variables are not Variable objects.

## Class Members

### GATE_OP

Defined in tensorflow/python/training/adam.py.