# tf.contrib.distributions.bijectors.AbsoluteValue

## Class `AbsoluteValue`

Inherits From: `Bijector`

Computes `Y = g(X) = Abs(X)`, element-wise.

This non-injective bijector allows for transformations of scalar distributions with the absolute value function, which maps `(-inf, inf)` to `[0, inf)`.

• For `y in (0, inf)`, `AbsoluteValue.inverse(y)` returns the set inverse `{x in (-inf, inf) : |x| = y}` as a tuple, `-y, y`.
• `AbsoluteValue.inverse(0)` returns `0, 0`, which is not the set inverse (the set inverse is the singleton `{0}`), but "works" in conjunction with `TransformedDistribution` to produce a left semi-continuous pdf.
• For `y < 0`, `AbsoluteValue.inverse(y)` happily returns the wrong thing, `-y, y`. This is done for efficiency. If `validate_args == True`, `y < 0` will raise an exception.
``````tfd = tf.contrib.distributions

abs = tfd.bijectors.AbsoluteValue()

abs.forward([-1., 0., 1.])
==> [1., 0.,  1.]

abs.inverse(1.)
==> [-1., 1.]

# The |dX/dY| is constant, == 1.  So Log|dX/dY| == 0.
abs.inverse_log_det_jacobian(1.)
==> [0., 0.]

# Special case handling of 0.
abs.inverse(0.)
==> [0., 0.]

abs.inverse_log_det_jacobian(0.)
==> [0., 0.]
``````

## `__init__`

``````__init__(
validate_args=False,
name='absolute_value'
)
``````

Instantiates the `AbsoluteValue` bijector. (deprecated)

THIS FUNCTION IS DEPRECATED. It will be removed after 2018-10-01. Instructions for updating: The TensorFlow Distributions library has moved to TensorFlow Probability (https://github.com/tensorflow/probability). You should update all references to use `tfp.distributions` instead of `tf.contrib.distributions`.

#### Args:

• `validate_args`: Python `bool` indicating whether arguments should be checked for correctness, in particular whether inputs to `inverse` and `inverse_log_det_jacobian` are non-negative.
• `name`: Python `str` name given to ops managed by this object.

## Properties

### `dtype`

dtype of `Tensor`s transformable by this distribution.

### `forward_min_event_ndims`

Returns the minimal number of dimensions bijector.forward operates on.

### `graph_parents`

Returns this `Bijector`'s graph_parents as a Python list.

### `inverse_min_event_ndims`

Returns the minimal number of dimensions bijector.inverse operates on.

### `is_constant_jacobian`

Returns true iff the Jacobian matrix is not a function of x.

#### Returns:

• `is_constant_jacobian`: Python `bool`.

### `name`

Returns the string name of this `Bijector`.

### `validate_args`

Returns True if Tensor arguments will be validated.

## Methods

### `forward`

``````forward(
x,
name='forward'
)
``````

Returns the forward `Bijector` evaluation, i.e., X = g(Y).

#### Args:

• `x`: `Tensor`. The input to the "forward" evaluation.
• `name`: The name to give this op.

#### Returns:

`Tensor`.

#### Raises:

• `TypeError`: if `self.dtype` is specified and `x.dtype` is not `self.dtype`.
• `NotImplementedError`: if `_forward` is not implemented.

### `forward_event_shape`

``````forward_event_shape(input_shape)
``````

Shape of a single sample from a single batch as a `TensorShape`.

Same meaning as `forward_event_shape_tensor`. May be only partially defined.

#### Args:

• `input_shape`: `TensorShape` indicating event-portion shape passed into `forward` function.

#### Returns:

• `forward_event_shape_tensor`: `TensorShape` indicating event-portion shape after applying `forward`. Possibly unknown.

### `forward_event_shape_tensor`

``````forward_event_shape_tensor(
input_shape,
name='forward_event_shape_tensor'
)
``````

Shape of a single sample from a single batch as an `int32` 1D `Tensor`.

#### Args:

• `input_shape`: `Tensor`, `int32` vector indicating event-portion shape passed into `forward` function.
• `name`: name to give to the op

#### Returns:

• `forward_event_shape_tensor`: `Tensor`, `int32` vector indicating event-portion shape after applying `forward`.

### `forward_log_det_jacobian`

``````forward_log_det_jacobian(
x,
event_ndims,
name='forward_log_det_jacobian'
)
``````

Returns both the forward_log_det_jacobian.

#### Args:

• `x`: `Tensor`. The input to the "forward" Jacobian determinant evaluation.
• `event_ndims`: Number of dimensions in the probabilistic events being transformed. Must be greater than or equal to `self.forward_min_event_ndims`. The result is summed over the final dimensions to produce a scalar Jacobian determinant for each event, i.e. it has shape `x.shape.ndims - event_ndims` dimensions.
• `name`: The name to give this op.

#### Returns:

`Tensor`, if this bijector is injective. If not injective this is not implemented.

#### Raises:

• `TypeError`: if `self.dtype` is specified and `y.dtype` is not `self.dtype`.
• `NotImplementedError`: if neither `_forward_log_det_jacobian` nor {`_inverse`, `_inverse_log_det_jacobian`} are implemented, or this is a non-injective bijector.

### `inverse`

``````inverse(
y,
name='inverse'
)
``````

Returns the inverse `Bijector` evaluation, i.e., X = g^{-1}(Y).

#### Args:

• `y`: `Tensor`. The input to the "inverse" evaluation.
• `name`: The name to give this op.

#### Returns:

`Tensor`, if this bijector is injective. If not injective, returns the k-tuple containing the unique `k` points `(x1, ..., xk)` such that `g(xi) = y`.

#### Raises:

• `TypeError`: if `self.dtype` is specified and `y.dtype` is not `self.dtype`.
• `NotImplementedError`: if `_inverse` is not implemented.

### `inverse_event_shape`

``````inverse_event_shape(output_shape)
``````

Shape of a single sample from a single batch as a `TensorShape`.

Same meaning as `inverse_event_shape_tensor`. May be only partially defined.

#### Args:

• `output_shape`: `TensorShape` indicating event-portion shape passed into `inverse` function.

#### Returns:

• `inverse_event_shape_tensor`: `TensorShape` indicating event-portion shape after applying `inverse`. Possibly unknown.

### `inverse_event_shape_tensor`

``````inverse_event_shape_tensor(
output_shape,
name='inverse_event_shape_tensor'
)
``````

Shape of a single sample from a single batch as an `int32` 1D `Tensor`.

#### Args:

• `output_shape`: `Tensor`, `int32` vector indicating event-portion shape passed into `inverse` function.
• `name`: name to give to the op

#### Returns:

• `inverse_event_shape_tensor`: `Tensor`, `int32` vector indicating event-portion shape after applying `inverse`.

### `inverse_log_det_jacobian`

``````inverse_log_det_jacobian(
y,
event_ndims,
name='inverse_log_det_jacobian'
)
``````

Returns the (log o det o Jacobian o inverse)(y).

Mathematically, returns: `log(det(dX/dY))(Y)`. (Recall that: `X=g^{-1}(Y)`.)

Note that `forward_log_det_jacobian` is the negative of this function, evaluated at `g^{-1}(y)`.

#### Args:

• `y`: `Tensor`. The input to the "inverse" Jacobian determinant evaluation.
• `event_ndims`: Number of dimensions in the probabilistic events being transformed. Must be greater than or equal to `self.inverse_min_event_ndims`. The result is summed over the final dimensions to produce a scalar Jacobian determinant for each event, i.e. it has shape `y.shape.ndims - event_ndims` dimensions.
• `name`: The name to give this op.

#### Returns:

`Tensor`, if this bijector is injective. If not injective, returns the tuple of local log det Jacobians, `log(det(Dg_i^{-1}(y)))`, where `g_i` is the restriction of `g` to the `ith` partition `Di`.

#### Raises:

• `TypeError`: if `self.dtype` is specified and `y.dtype` is not `self.dtype`.
• `NotImplementedError`: if `_inverse_log_det_jacobian` is not implemented.