Class convolutional_orthogonal_3d
Defined in tensorflow/python/ops/init_ops.py
.
Initializer that generates a 3D orthogonal kernel for ConvNets.
The shape of the tensor must have length 5. The number of input filters must not exceed the number of output filters. The orthogonality(==isometry) is exact when the inputs are circular padded. There are finite-width effects with non-circular padding (e.g. zero padding). See algorithm 1 [Xiao et al., 2018] in: https://arxiv.org/abs/1806.05393
Args:
gain
: Multiplicative factor to apply to the orthogonal matrix. Default is 1. The 2-norm of an input is multiplied by a factor of 'sqrt(gain)' after applying this convolution.seed
: A Python integer. Used to create random seeds. Seetf.set_random_seed
for behavior.dtype
: The data type.
__init__
__init__(
gain=1.0,
seed=None,
dtype=tf.float32
)
Methods
__call__
__call__(
shape,
dtype=None,
partition_info=None
)
from_config
from_config(
cls,
config
)
Instantiates an initializer from a configuration dictionary.
Example:
initializer = RandomUniform(-1, 1)
config = initializer.get_config()
initializer = RandomUniform.from_config(config)
Args:
config
: A Python dictionary. It will typically be the output ofget_config
.
Returns:
An Initializer instance.
get_config
get_config()