Class ScheduledEmbeddingTrainingHelper
Inherits From: TrainingHelper
Defined in tensorflow/contrib/seq2seq/python/ops/helper.py
.
See the guide: Seq2seq Library (contrib) > Dynamic Decoding
A training helper that adds scheduled sampling.
Returns -1s for sample_ids where no sampling took place; valid sample id values elsewhere.
__init__
__init__(
inputs,
sequence_length,
embedding,
sampling_probability,
time_major=False,
seed=None,
scheduling_seed=None,
name=None
)
Initializer.
Args:
inputs
: A (structure of) input tensors.sequence_length
: An int32 vector tensor.embedding
: A callable that takes a vector tensor ofids
(argmax ids), or theparams
argument forembedding_lookup
.sampling_probability
: A 0Dfloat32
tensor: the probability of sampling categorically from the output ids instead of reading directly from the inputs.time_major
: Python bool. Whether the tensors ininputs
are time major. IfFalse
(default), they are assumed to be batch major.seed
: The sampling seed.scheduling_seed
: The schedule decision rule sampling seed.name
: Name scope for any created operations.
Raises:
ValueError
: ifsampling_probability
is not a scalar or vector.
Properties
batch_size
inputs
sample_ids_dtype
sample_ids_shape
sequence_length
Methods
initialize
initialize(name=None)
next_inputs
next_inputs(
time,
outputs,
state,
sample_ids,
name=None
)
sample
sample(
time,
outputs,
state,
name=None
)