Watch keynotes, product sessions, workshops, and more from Google I/O

# tensorflow::ops::Tanh

`#include <math_ops.h>`

Computes hyperbolic tangent of `x` element-wise.

## Summary

Given an input tensor, this function computes hyperbolic tangent of every element in the tensor. Input range is `[-inf, inf]` and output range is `[-1,1]`.

```  x = tf.constant([-float("inf"), -5, -0.5, 1, 1.2, 2, 3, float("inf")])
tf.math.tanh(x) ==> [-1. -0.99990916 -0.46211717 0.7615942 0.8336547 0.9640276 0.9950547 1.]
```

Arguments:

Returns:

• `Output`: The y tensor.

### Constructors and Destructors

`Tanh(const ::tensorflow::Scope & scope, ::tensorflow::Input x)`

### Public attributes

`operation`
`Operation`
`y`
`::tensorflow::Output`

### Public functions

`node() const `
`::tensorflow::Node *`
`operator::tensorflow::Input() const `
``` ```
``` ```
`operator::tensorflow::Output() const `
``` ```
``` ```

## Public attributes

### operation

`Operation operation`

### y

`::tensorflow::Output y`

## Public functions

### Tanh

``` Tanh(
const ::tensorflow::Scope & scope,
::tensorflow::Input x
)```

### node

`::tensorflow::Node * node() const `

### operator::tensorflow::Input

` operator::tensorflow::Input() const `

### operator::tensorflow::Output

` operator::tensorflow::Output() const `
[{ "type": "thumb-down", "id": "missingTheInformationINeed", "label":"Missing the information I need" },{ "type": "thumb-down", "id": "tooComplicatedTooManySteps", "label":"Too complicated / too many steps" },{ "type": "thumb-down", "id": "outOfDate", "label":"Out of date" },{ "type": "thumb-down", "id": "samplesCodeIssue", "label":"Samples / code issue" },{ "type": "thumb-down", "id": "otherDown", "label":"Other" }]
[{ "type": "thumb-up", "id": "easyToUnderstand", "label":"Easy to understand" },{ "type": "thumb-up", "id": "solvedMyProblem", "label":"Solved my problem" },{ "type": "thumb-up", "id": "otherUp", "label":"Other" }]