Optimizer that implements the Adam algorithm.

Inherits From: Optimizer

Adam optimization is a stochastic gradient descent method that is based on adaptive estimation of first-order and second-order moments. According to the paper Adam: A Method for Stochastic Optimization. Kingma et al., 2014, the method is "computationally efficient, has little memory requirement, invariant to diagonal rescaling of gradients, and is well suited for problems that are large in terms of data/parameters".

For AMSGrad see On The Convergence Of Adam And Beyond. Reddi et al., 5-8.

learning_rate A Tensor or a floating point value. The learning rate.
beta_1 A float value or a constant float tensor. The exponential decay rate for the 1st moment estimates.
beta_2 A float value or a constant float tensor. The exponential decay rate for the 2nd moment estimates.
epsilon A small constant for numerical stability. This epsilon is "epsilon hat" in the Kingma and Ba paper (in the formula just before Section 2.1), not the epsilon in Algorithm 1 of the paper.
amsgrad boolean. Whether to apply AMSGrad variant of this algorithm from the paper "On the Convergence of Adam and beyond".
name Optional name for the operations created when applying gradients. Defaults to "Adam".
**kwargs keyword arguments. Allowed to be {clipnorm, clipvalue, lr, decay}. clipnorm is clip gradients by norm; clipvalue is clip gradients by value, decay is included for backward compatibility to allow time inverse decay of learning rate. lr is included for backward compatibility, recommended to use learning_rate instead.

iterations Variable. The number of training steps this Optimizer has run.
weights Returns variables of this Optimizer based on the order created.

## Methods

View source

Add a new slot variable for var.

View source

View source

This is the second part of minimize(). It returns an Operation that applies gradients.

Args
name Optional name for the returned operation. Default to the name passed to the Optimizer constructor.

Returns
An Operation that applies the specified gradients. The iterations will be automatically increased by 1.

Raises
ValueError If none of the variables have gradients.

### from_config

View source

Creates an optimizer from its config.

This method is the reverse of get_config, capable of instantiating the same optimizer from the config dictionary.

Arguments
config A Python dictionary, typically the output of get_config.
custom_objects A Python dictionary mapping names to additional Python objects used to create this optimizer, such as a function used for a hyperparameter.

Returns
An optimizer instance.

### get_config

View source

Returns the config of the optimimizer.

An optimizer config is a Python dictionary (serializable) containing the configuration of an optimizer. The same optimizer can be reinstantiated later (without any saved state) from this configuration.

Returns
Python dictionary.

View source

Returns gradients of loss with respect to params.

Arguments
loss Loss tensor.
params List of variables.

Returns

Raises
ValueError In case any gradient cannot be computed (e.g. if gradient function not implemented).

View source

### get_slot_names

View source

A list of names for this optimizer's slots.

View source

View source

### minimize

View source

Minimize loss by updating var_list.

Args
loss A callable taking no arguments which returns the value to minimize.
var_list list or tuple of Variable objects to update to minimize loss, or a callable returning the list or tuple of Variable objects. Use callable when the variable list would otherwise be incomplete before minimize since the variables are created at the first time loss is called.
name Optional name for the returned operation.

Returns
An Operation that updates the variables in var_list. If global_step was not None, that operation also increments global_step.

Raises
ValueError If some of the variables are not Variable objects.

View source

### variables

View source

Returns variables of this Optimizer based on the order created.

[{ "type": "thumb-down", "id": "missingTheInformationINeed", "label":"必要な情報がない" },{ "type": "thumb-down", "id": "tooComplicatedTooManySteps", "label":"複雑すぎる / 手順が多すぎる" },{ "type": "thumb-down", "id": "outOfDate", "label":"最新ではない" },{ "type": "thumb-down", "id": "samplesCodeIssue", "label":"Samples / code issue" },{ "type": "thumb-down", "id": "otherDown", "label":"その他" }]
[{ "type": "thumb-up", "id": "easyToUnderstand", "label":"わかりやすい" },{ "type": "thumb-up", "id": "solvedMyProblem", "label":"問題の解決に役立った" },{ "type": "thumb-up", "id": "otherUp", "label":"その他" }]