tf.contrib.distributions.bijectors.SoftmaxCentered

Class SoftmaxCentered

Inherits From: Bijector

See the guide: Random variable transformations (contrib) > Bijectors

Bijector which computes Y = g(X) = exp([X 0]) / sum(exp([X 0])).

To implement softmax as a bijection, the forward transformation appends a value to the input and the inverse removes this coordinate. The appended coordinate represents a pivot, e.g., softmax(x) = exp(x-c) / sum(exp(x-c)) where c is the implicit last coordinate.

Example Use:

bijector.SoftmaxCentered().forward(tf.log([2, 3, 4]))
# Result: [0.2, 0.3, 0.4, 0.1]
# Extra result: 0.1

bijector.SoftmaxCentered().inverse([0.2, 0.3, 0.4, 0.1])
# Result: tf.log([2, 3, 4])
# Extra coordinate removed.


At first blush it may seem like the Invariance of domain theorem implies this implementation is not a bijection. However, the appended dimension makes the (forward) image non-open and the theorem does not directly apply.

Properties

dtype

dtype of Tensors transformable by this distribution.

event_ndims

Returns then number of event dimensions this bijector operates on.

graph_parents

Returns this Bijector's graph_parents as a Python list.

is_constant_jacobian

Returns true iff the Jacobian is not a function of x.

Returns:

• is_constant_jacobian: Python bool.

name

Returns the string name of this Bijector.

validate_args

Returns True if Tensor arguments will be validated.

Methods

__init__

__init__(
validate_args=False,
name='softmax_centered'
)


forward

forward(
x,
name='forward'
)


Returns the forward Bijector evaluation, i.e., X = g(Y).

Args:

• x: Tensor. The input to the "forward" evaluation.
• name: The name to give this op.

Returns:

Tensor.

Raises:

• TypeError: if self.dtype is specified and x.dtype is not self.dtype.
• NotImplementedError: if _forward is not implemented.

forward_event_shape

forward_event_shape(input_shape)


Shape of a single sample from a single batch as a TensorShape.

Same meaning as forward_event_shape_tensor. May be only partially defined.

Args:

• input_shape: TensorShape indicating event-portion shape passed into forward function.

Returns:

• forward_event_shape_tensor: TensorShape indicating event-portion shape after applying forward. Possibly unknown.

forward_event_shape_tensor

forward_event_shape_tensor(
input_shape,
name='forward_event_shape_tensor'
)


Shape of a single sample from a single batch as an int32 1D Tensor.

Args:

• input_shape: Tensor, int32 vector indicating event-portion shape passed into forward function.
• name: name to give to the op

Returns:

• forward_event_shape_tensor: Tensor, int32 vector indicating event-portion shape after applying forward.

forward_log_det_jacobian

forward_log_det_jacobian(
x,
name='forward_log_det_jacobian'
)


Returns both the forward_log_det_jacobian.

Args:

• x: Tensor. The input to the "forward" Jacobian evaluation.
• name: The name to give this op.

Returns:

Tensor, if this bijector is injective. If not injective this is not implemented.

Raises:

• TypeError: if self.dtype is specified and y.dtype is not self.dtype.
• NotImplementedError: if neither _forward_log_det_jacobian nor {_inverse, _inverse_log_det_jacobian} are implemented, or this is a non-injective bijector.

inverse

inverse(
y,
name='inverse'
)


Returns the inverse Bijector evaluation, i.e., X = g^{-1}(Y).

Args:

• y: Tensor. The input to the "inverse" evaluation.
• name: The name to give this op.

Returns:

Tensor, if this bijector is injective. If not injective, returns the k-tuple containing the unique k points (x1, ..., xk) such that g(xi) = y.

Raises:

• TypeError: if self.dtype is specified and y.dtype is not self.dtype.
• NotImplementedError: if _inverse is not implemented.

inverse_event_shape

inverse_event_shape(output_shape)


Shape of a single sample from a single batch as a TensorShape.

Same meaning as inverse_event_shape_tensor. May be only partially defined.

Args:

• output_shape: TensorShape indicating event-portion shape passed into inverse function.

Returns:

• inverse_event_shape_tensor: TensorShape indicating event-portion shape after applying inverse. Possibly unknown.

inverse_event_shape_tensor

inverse_event_shape_tensor(
output_shape,
name='inverse_event_shape_tensor'
)


Shape of a single sample from a single batch as an int32 1D Tensor.

Args:

• output_shape: Tensor, int32 vector indicating event-portion shape passed into inverse function.
• name: name to give to the op

Returns:

• inverse_event_shape_tensor: Tensor, int32 vector indicating event-portion shape after applying inverse.

inverse_log_det_jacobian

inverse_log_det_jacobian(
y,
name='inverse_log_det_jacobian'
)


Returns the (log o det o Jacobian o inverse)(y).

Mathematically, returns: log(det(dX/dY))(Y). (Recall that: X=g^{-1}(Y).)

Note that forward_log_det_jacobian is the negative of this function, evaluated at g^{-1}(y).

Args:

• y: Tensor. The input to the "inverse" Jacobian evaluation.
• name: The name to give this op.

Returns:

Tensor, if this bijector is injective. If not injective, returns the tuple of local log det Jacobians, log(det(Dg_i^{-1}(y))), where g_i is the restriction of g to the ith partition Di.

Raises:

• TypeError: if self.dtype is specified and y.dtype is not self.dtype.
• NotImplementedError: if _inverse_log_det_jacobian is not implemented.