alpha is the shape parameter describing the distribution(s), and beta is
the inverse scale parameter(s).

The samples are differentiable w.r.t. alpha and beta.
The derivatives are computed using the approach described in
(Figurnov et al., 2018).

Example:

samples=tf.random.gamma([10],[0.5,1.5])# samples has shape [10, 2], where each slice [:, 0] and [:, 1] represents# the samples drawn from each distributionsamples=tf.random.gamma([7,5],[0.5,1.5])# samples has shape [7, 5, 2], where each slice [:, :, 0] and [:, :, 1]# represents the 7x5 samples drawn from each of the two distributionsalpha=tf.constant([[1.],[3.],[5.]])beta=tf.constant([[3.,4.]])samples=tf.random.gamma([30],alpha=alpha,beta=beta)# samples has shape [30, 3, 2], with 30 samples each of 3x2 distributions.loss=tf.reduce_mean(tf.square(samples))dloss_dalpha,dloss_dbeta=tf.gradients(loss,[alpha,beta])# unbiased stochastic derivatives of the loss functionalpha.shape==dloss_dalpha.shape# Truebeta.shape==dloss_dbeta.shape# True

Args

shape

A 1-D integer Tensor or Python array. The shape of the output samples
to be drawn per alpha/beta-parameterized distribution.

alpha

A Tensor or Python value or N-D array of type dtype. alpha
provides the shape parameter(s) describing the gamma distribution(s) to
sample. Must be broadcastable with beta.

beta

A Tensor or Python value or N-D array of type dtype. Defaults to 1.
beta provides the inverse scale parameter(s) of the gamma
distribution(s) to sample. Must be broadcastable with alpha.

dtype

The type of alpha, beta, and the output: float16, float32, or
float64.

seed

A Python integer. Used to create a random seed for the distributions.
See
tf.random.set_seed
for behavior.

name

Optional name for the operation.

Returns

samples

a Tensor of shape
tf.concat([shape, tf.shape(alpha + beta)], axis=0) with values of type
dtype.