# tf.space_to_batch

SpaceToBatch for N-D tensors of type T.

This operation divides "spatial" dimensions [1, ..., M] of the input into a grid of blocks of shape block_shape, and interleaves these blocks with the "batch" dimension (0) such that in the output, the spatial dimensions [1, ..., M] correspond to the position within the grid, and the batch dimension combines both the position within a spatial block and the original batch position. Prior to division into blocks, the spatial dimensions of the input are optionally zero padded according to paddings. See below for a precise description.

This operation is equivalent to the following steps:

1. Zero-pad the start and end of dimensions [1, ..., M] of the input according to paddings to produce padded of shape padded_shape.

[batch] + [padded_shape[1] / block_shape[0], block_shape[0], ..., padded_shape[M] / block_shape[M-1], block_shape[M-1]] + remaining_shape

block_shape + [batch] + [padded_shape[1] / block_shape[0], ..., padded_shape[M] / block_shape[M-1]] + remaining_shape

4. Reshape permuted_reshaped_padded to flatten block_shape into the batch dimension, producing an output tensor of shape:

[batch * prod(block_shape)] + [padded_shape[1] / block_shape[0], ..., padded_shape[M] / block_shape[M-1]] + remaining_shape

#### Some examples:

(1) For the following input of shape [1, 2, 2, 1], block_shape = [2, 2], and paddings = [[0, 0], [0, 0]]:

x = [[[[1], [2]], [[3], [4]]]]

The output tensor has shape [4, 1, 1, 1] and value:

[[[[1]]], [[[2]]], [[[3]]], [[[4]]]]

(2) For the following input of shape [1, 2, 2, 3], block_shape = [2, 2], and paddings = [[0, 0], [0, 0]]:

x = [[[[1, 2, 3], [4, 5, 6]],
[[7, 8, 9], [10, 11, 12]]]]

The output tensor has shape [4, 1, 1, 3] and value:

[[[[1, 2, 3]]], [[[4, 5, 6]]], [[[7, 8, 9]]], [[[10, 11, 12]]]]

(3) For the following input of shape [1, 4, 4, 1], block_shape = [2, 2], and paddings = [[0, 0], [0, 0]]:

x = [[[[1],   [2],  [3],  [4]],
[[5],   [6],  [7],  [8]],
[[9],  [10], [11],  [12]],
[[13], [14], [15],  [16]]]]

The output tensor has shape [4, 2, 2, 1] and value:

x = [[[[1], [3]], [[9], [11]]],
[[[2], [4]], [[10], [12]]],
[[[5], [7]], [[13], [15]]],
[[[6], [8]], [[14], [16]]]]

(4) For the following input of shape [2, 2, 4, 1], block_shape = [2, 2], and paddings = [[0, 0], [2, 0]]:

x = [[[[1],   [2],  [3],  [4]],
[[5],   [6],  [7],  [8]]],
[[[9],  [10], [11],  [12]],
[[13], [14], [15],  [16]]]]

The output tensor has shape [8, 1, 3, 1] and value:

x = [[[[0], [1], [3]]], [[[0], [9], [11]]],
[[[0], [2], [4]]], [[[0], [10], [12]]],
[[[0], [5], [7]]], [[[0], [13], [15]]],
[[[0], [6], [8]]], [[[0], [14], [16]]]]

Among others, this operation is useful for reducing atrous convolution into regular convolution.

input A Tensor. N-D with shape input_shape = [batch] + spatial_shape + remaining_shape, where spatial_shape has M dimensions.
block_shape A Tensor. Must be one of the following types: int32, int64. 1-D with shape [M], all values must be >= 1.
paddings A Tensor. Must be one of the following types: int32, int64. 2-D with shape [M, 2], all values must be >= 0. paddings[i] = [pad_start, pad_end] specifies the padding for input dimension i + 1, which corresponds to spatial dimension i. It is required that block_shape[i] divides input_shape[i + 1] + pad_start + pad_end.
name A name for the operation (optional).

A Tensor. Has the same type as input.

[{ "type": "thumb-down", "id": "missingTheInformationINeed", "label":"Missing the information I need" },{ "type": "thumb-down", "id": "tooComplicatedTooManySteps", "label":"Too complicated / too many steps" },{ "type": "thumb-down", "id": "outOfDate", "label":"Out of date" },{ "type": "thumb-down", "id": "samplesCodeIssue", "label":"Samples / code issue" },{ "type": "thumb-down", "id": "otherDown", "label":"Other" }]
[{ "type": "thumb-up", "id": "easyToUnderstand", "label":"Easy to understand" },{ "type": "thumb-up", "id": "solvedMyProblem", "label":"Solved my problem" },{ "type": "thumb-up", "id": "otherUp", "label":"Other" }]
{ "last_modified": "Last updated 2024-01-23 UTC.", "state": "" }