tf.sparse.split

Split a SparseTensor into num_split tensors along axis.

If the sp_input.dense_shape[axis] is not an integer multiple of num_split each slice starting from 0:shape[axis] % num_split gets extra one dimension. For example:

indices = [[0, 2], [0, 4], [0, 5], [1, 0], [1, 1]]
values = [1, 2, 3, 4, 5]
t = tf.sparse.SparseTensor(indices=indices, values=values,
                           dense_shape=[2, 7])
tf.sparse.to_dense(t)
<tf.Tensor: shape=(2, 7), dtype=int32, numpy=
array([[0, 0, 1, 0, 2, 3, 0],
       [4, 5, 0, 0, 0, 0, 0]], dtype=int32)>
output = tf.sparse.split(sp_input=t, num_split=2, axis=1)
tf.sparse.to_dense(output[0])
<tf.Tensor: shape=(2, 4), dtype=int32, numpy=
array([[0, 0, 1, 0],
       [4, 5, 0, 0]], dtype=int32)>
tf.sparse.to_dense(output[1])
<tf.Tensor: shape=(2, 3), dtype=int32, numpy=
array([[2, 3, 0],
       [0, 0, 0]], dtype=int32)>
output = tf.sparse.split(sp_input=t, num_split=2, axis=0)
tf.sparse.to_dense(output[0])
<tf.Tensor: shape=(1, 7), dtype=int32, numpy=array([[0, 0, 1, 0, 2, 3, 0]],
dtype=int32)>
tf.sparse.to_dense(output[1])
<tf.Tensor: shape=(1, 7), dtype=int32, numpy=array([[4, 5, 0, 0, 0, 0, 0]],
dtype=int32)>
output = tf.sparse.split(sp_input=t, num_split=2, axis=-1)
tf.sparse.to_dense(output[0])
<tf.Tensor: shape=(2, 4), dtype=int32, numpy=
array([[0, 0, 1, 0],
       [4, 5, 0, 0]], dtype=int32)>
tf.sparse.to_dense(output[1])
<tf.Tensor: shape=(2, 3), dtype=int32, numpy=
array([[2, 3, 0],
       [0, 0, 0]], dtype=int32)>

sp_input The SparseTensor to split.
num_split A Python integer. The number of ways to split.
axis A 0-D int32 Tensor. The dimension along which to split. Must be in range [-rank, rank), where rank is the number of dimensions in the input SparseTensor.
name A name for the operation (optional).

num_split SparseTensor objects resulting from splitting value.

TypeError If sp_input is not a SparseTensor.